
Prepared for
Jeremy Bokobza
TruFin

Prepared by
Frank Bachman
Nipun Gupta
Zellic

November 19, 2024

TruFin Injective Staker
Smart Contract Security Assessment

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Contents About Zellic 3

1. Overview 3

1.1. Executive Summary 4

1.2. Goals of the Assessment 4

1.3. Non-goals and Limitations 4

1.4. Results 4

2. Introduction 5

2.1. About TruFin Injective Staker 6

2.2. Methodology 6

2.3. Scope 8

2.4. Project Overview 8

2.5. Project Timeline 9

3. Detailed Findings 9

3.1. Unstake could be blocked for certain users 10

3.2. Erroneousmint-feemessage 12

4. ThreatModel 13

4.1. Module: Injective-staker/contract.rs 14

5. Assessment Results 34

5.1. Disclaimer 35

Zellic © 2024 ← Back to Contents Page 2 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

About Zellic Zellic is a vulnerability research firm with deep expertise in blockchain security. We specialize in
EVM, Move (Aptos and Sui), and Solana as well as Cairo, NEAR, and Cosmos. We review L1s and
L2s, cross-chain protocols, wallets and applied cryptography, zero-knowledge circuits, web appli-
cations, andmore.

Prior to Zellic, we founded the #1 CTF (competitive hacking) team ↗ worldwide in 2020, 2021, and
2023. Our engineers bring a rich set of skills and backgrounds, including cryptography, web se-
curity, mobile security, low-level exploitation, and finance. Our background in traditional informa-
tion security and competitive hacking has enabled us to consistently discover hidden vulnerabilities
and develop novel security research, earning us the reputation as the go-to security firm for teams
whose rate of innovation outpaces the existing security landscape.

FormoreonZellic’s ongoing security research initiatives, checkout ourwebsite zellic.io ↗ and follow
@zellic_io ↗ on Twitter. If you are interested in partnering with Zellic, contact us at hello@zellic.io ↗.

Zellic © 2024 ← Back to Contents Page 3 of 35

https://perfect.blue
https://zellic.io
https://twitter.com/zellic_io
mailto:hello@zellic.io

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

1. Overview 1.1. Executive Summary

Zellic conducted a security assessment for TruFin from November 6th to November 15th, 2024.
During this engagement, Zellic reviewed TruFin Injective Staker's code for security vulnerabilities,
design issues, and general weaknesses in security posture.

1.2. Goals of the Assessment

In a security assessment, goals are framed in terms of questions that we wish to answer. These
questions are agreed upon through close communication between Zellic and the client. In this
assessment, we sought to answer the following questions:

• Is it possible for a user to exploit the system to claimmore INJ than they are legitimately
entitled to?

• Could amalicious user cause protocol insolvency?
• Are there ways for someone tomanipulate the exchange rate for personal profit?
• Could user stakes be blocked ormade inaccessible in any way?

1.3. Non-goals and Limitations

Wedid not assess the following areas that were outside the scope of this engagement:

• Front-end components
• Infrastructure relating to the project
• Key custody

Due to the time-boxed nature of security assessments in general, there are limitations in the
coverage an assessment can provide.

1.4. Results

Duringour assessmenton thescopedTruFin InjectiveStaker contracts,wediscovered twofindings.
No critical issues were found. One finding was of medium impact and the other finding was
informational in nature.

Zellic © 2024 ← Back to Contents Page 4 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Breakdown of Finding Impacts

Impact Level Count

■ Critical 0

■ High 0

■ Medium 1

■ Low 0

■ Informational 1

Zellic © 2024 ← Back to Contents Page 5 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

2. Introduction 2.1. About TruFin Injective Staker

TruFin contributed the following description of TruFin Injective Staker:

TruFin provides access to INJ staking for institutions featuring auto-compounding of rewards
and the ability to allocate rewards to other addresses. The protocol is permissioned, ensuring
that each user has passed know-your-customer (KYC) checks and that only whitelisted users
can stake.

2.2. Methodology

During a security assessment, Zellic works through standard phases of security auditing, including
bothautomated testingandmanual review. Theseprocessescanvarysignificantlyperengagement,
but themajority of the time is spent on a thoroughmanual review of the entire scope.

Alongside a variety of tools and analyzers used on an as-needed basis, Zellic focuses primarily on
the following classes of security and reliability issues:

Basic codingmistakes.Many critical vulnerabilities in the past have been caused by simple,
surface-level mistakes that could have easily been caught ahead of time by code review.
Depending on the engagement, wemay also employ sophisticated analyzers such asmodel
checkers, theorem provers, fuzzers, and so on as necessary. We also perform a cursory
review of the code to familiarize ourselves with the contracts.

Nondeterminism. Nondeterminism is a leading class of security issues on Cosmos. It can
lead to consensus failure and blockchain halts. This includes but is not limited to vectors like
wall-clock times, map iteration, and other sources of undefined behavior (UB) in Go.

Arithmetic issues. This includes but is not limited to integer overflows and underflows,
floating-point associativity issues, loss of precision, and unfavorable integer rounding.

Complex integration risks. Several high-profile exploits have been the result of
unintended consequences when interacting with the broader ecosystem, such as via
IBC (Inter-Blockchain Communication Protocol). Zellic will review the project's potential
external interactions and summarize the associated risks. If applicable, wewill also examine
any IBC interactions against the ICS Specification Standard to look for inconsistencies,
flaws, and vulnerabilities.

For each finding, Zellic assigns it an impact rating based on its severity and likelihood. There is no
hard-and-fast formula for calculating a finding’s impact. Instead, we assign it on a case-by-case
basis based on our judgment and experience. Both the severity and likelihood of an issue affect
its impact. For instance, a highly severe issue's impact may be attenuated by a low likelihood.
We assign the following impact ratings (ordered by importance): Critical, High, Medium, Low, and
Informational.

Zellic © 2024 ← Back to Contents Page 6 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Zellic organizes its reports such that themost important findings come first in the document, rather
thanbeing strictly orderedon impact alone. Thus,wemay sometimesemphasize an "Informational"
findinghigher thana "Low"finding. Thekeydistinction is that althoughcertain findingsmayhave the
same impact rating, their importancemay differ. This varies based on various soft factors, like our
clients’ threat models, their business needs, and so on. We aim to provide useful and actionable
advice to our partners considering their long-term goals, rather than a simple list of security issues
at present.

Zellic © 2024 ← Back to Contents Page 7 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

2.3. Scope

The engagement involved a review of the following targets:

TruFin Injective Staker Contracts

Type Rust

Platform Cosmos

Target smart-contracts-inj-zellic

Repository https://github.com/TruFin-io/smart-contracts-inj-zellic.git ↗

Version c3e4c242947a32f26fec95dbb220b0475f9c1f15

Programs constants.rs
contract.rs
error.rs
lib.rs
msg.rs
state.rs
whitelist.rs

2.4. Project Overview

Zellic was contracted to perform a security assessment for a total of three person-weeks. The as-
sessment was conducted by two consultants over the course of two calendar weeks.

Contact Information

Zellic © 2024 ← Back to Contents Page 8 of 35

https://github.com/TruFin-io/smart-contracts-inj-zellic.git

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

The following project managers were associ-
ated with the engagement:

Jacob Goreski
EngagementManager
jacob@zellic.io ↗

ChadMcDonald
EngagementManager
chad@zellic.io ↗

The following consultants were engaged to
conduct the assessment:

Frank Bachman
Engineer
frank@zellic.io ↗

Nipun Gupta
Engineer
nipun@zellic.io ↗

2.5. Project Timeline

The key dates of the engagement are detailed below.

November 6, 2024 Kick-off call

November 6, 2024 Start of primary review period

November 15, 2024 End of primary review period

Zellic © 2024 ← Back to Contents Page 9 of 35

mailto:jacob@zellic.io
mailto:chad@zellic.io
mailto:frank@zellic.io
mailto:nipun@zellic.io

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

3. Detailed Findings 3.1. Unstake could be blocked for certain users

Target contract.rs

Category CodingMistakes Severity Medium

Likelihood Medium Impact Medium

Description

When a user unstakes some amount of tokens, the tokens are unstaked from either the default val-
idator or the validator provided by the user. If the validator does not have enough tokens available
to unstake, the remaining tokens are transferred out of the CONTRACT_REWARDS. In certain cases, it
might be possible that the entire unstake amount comes out of the contract rewards.

For example, consider a case where there is one validator and 10 users delegate 100 tokens each
and after some time the rewards plus stakes become 120 for each user. For the last user to unstake,
the entire amount should come from the rewards as the contract first removes from the validators
and then from the rewards.

However, in that case, the actual_amount_to_unstake would be zero and the
undelegate message will fail here: https://github.com/InjectiveLabs/cosmos-
sdk/blob/master/x/staking/keeper/msg_server.go#L408.

if !msg.Amount.IsValid() || !msg.Amount.Amount.IsPositive() {
return nil, errorsmod.Wrap(

sdkerrors.ErrInvalidRequest,
"invalid shares amount",

)
}

Impact

Certain usersmight not be able to unstake.

Recommendations

We recommend only adding the unstake message if actual_amount_to_unstake is greater than
zero.

Zellic © 2024 ← Back to Contents Page 10 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Remediation

This issue has been acknowledgedbyTruFin, and a fixwas implemented in commit 78e5d925 ↗.

Zellic © 2024 ← Back to Contents Page 11 of 35

https://github.com/TruFin-io/smart-contracts-inj-zellic.git/commit/78e5d925aacb07b41857330ebf3ed07bcfa4b4a4

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

3.2. Erroneousmint-feemessage

Target contract.rs

Category CodingMistakes Severity Informational

Likelihood N/A Impact Informational

Description

In the internal_stake and internal_unstake functions, the contract adds the
mint_treasury_feesmessage evenwhen there are no rewards.

let validator_total_rewards = deps
.querier
.query_delegation(staker_address, validator_addr.clone())?
.and_then(|d| {

d.accumulated_rewards
.iter()
.find(|coin| coin.denom == INJ)
.cloned()

})
.map(|reward| reward.amount.u128())
.unwrap_or(0);

CONTRACT_REWARDS.save(deps.storage, &validator_total_rewards.into())?;

// mint fees to the treasury for the liquid rewards on the validator
let treasury_shares_minted = mint_treasury_fees(

&mut deps,
&env,
validator_total_rewards,
fee,
staker_info.treasury.clone(),
share_price_num,
share_price_denom,

)?;

Impact

If there are no rewards or the fee amount is zero, the contract does not need to add a message to
mint the fee.

Zellic © 2024 ← Back to Contents Page 12 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Recommendations

Only add themint message for the fee, if the computed fee is nonzero.

Remediation

This issue has been acknowledgedbyTruFin, and a fixwas implemented in commit ef8518f8 ↗.

Zellic © 2024 ← Back to Contents Page 13 of 35

https://github.com/TruFin-io/smart-contracts-inj-zellic.git/commit/ef8518f8af5eaa2802c4331347975228f0ba3d46

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

4. ThreatModel This provides a full threat model description for various functions. As time permitted, we analyzed
each function in thecontractsandcreatedawritten threatmodel for somecritical functions. A threat
model documents a given function’s externally controllable inputs and how an attacker could lever-
age each input to cause harm.

Not all functions in the audit scope may have been modeled. The absence of a threat model in this
section does not necessarily suggest that a function is safe.

4.1. Module: Injective-staker/contract.rs

Message: ExecuteMsg::AddAgent

This allows an existing agent to add a new agent to the whitelist.

Inputs

• info.sender
• Validation: The add_agent function verifies that the info.sender is a valid
agent.

• Impact: Ensures that only authorized agents canmodify the whitelist.
• new_agent

• Validation: The address is validated to ensure proper formatting, and it must
not already exist in the whitelist. Additionally, the new agent cannot be the
contract owner.

• Impact: This is the address of the new agent to be added.

Branches and code coverage (including function calls)

Intended branches

• If new_agent is valid and not already an agent, it is added to the whitelist.
Test coverage

Negative behavior

• Fail if the info.sender is not an existing agent.
Negative test

• Fail if new_agent is the contract owner.
Negative test

• Fail if new_agent is already in the whitelist.
Negative test

Zellic © 2024 ← Back to Contents Page 14 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Message: ExecuteMsg::AddUserToBlacklist

This allows an agent to add a user to the blacklist.

Inputs

• info.sender
• Validation: The add_user_to_blacklist function checks if the info.sender
is an authorized agent.

• Impact: N/A.
• user

• Validation: The user address is validated to ensure it is a valid address format.
• Impact: If the user is not already blacklisted, they are added to the blacklist.

Branches and code coverage (including function calls)

Intended branches

• If the user address is valid and not already blacklisted, it is added to the blacklist.
Test coverage

Negative behavior

• Fail if the info.sender is not an authorized agent.
Negative test

• Fail if the user address is invalid.
Negative test

• Fail if the user is already blacklisted.
Negative test

Message: ExecuteMsg::AddUserToWhitelist

This adds a user to the whitelist.

Inputs

• info.sender
• Validation: The add_user_to_whitelist function verifies that the
info.sender is an agent.

• Impact: Ensures only authorized agents can add users to the whitelist.
• user

• Validation: The user address is validated using deps.api.addr_validate.
Additionally, it ensures the user is not already whitelisted by checking their
current status.

Zellic © 2024 ← Back to Contents Page 15 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Impact: Specifies the user to be added to the whitelist, changing their status.

Branches and code coverage (including function calls)

Intended branches

• If the user address is valid and not already whitelisted, they are added to the whitelist.
Test coverage

Negative behavior

• Fail if the info.sender is not an agent.
Negative test

• Fail if the user address is invalid.
Negative test

• Fail if the user is already whitelisted.
Negative test

Message: ExecuteMsg::AddValidator

This allows the admin to add a new validator that can be staked to.

Inputs

• info.sender
• Validation: The add_validator function verifies that the info.sender is the
contract owner.

• Impact: N/A.
• validator_addr

• Validation: The address is verified to ensure it exists in the current validator
set and is not already in the contract's validator list.

• Impact: This is the address of the validator to be added.

Branches and code coverage (including function calls)

Intended branches

• If validator_addr is valid, it is added to the list of enabled validators in the contract state.
Test coverage

Negative behavior

• Fail if validator_addr already exists in the validator list.
Negative test

• Fail if validator_addr is not part of the current validator set.

Zellic © 2024 ← Back to Contents Page 16 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Negative test

Message: ExecuteMsg::Allocate

This allocates INJ staking rewards from the sender to a specified recipient.

Inputs

• info.sender
• Validation: Verified to ensure the sender is whitelisted. Confirmed that the
contract is not paused.

• Impact: Acts as the allocator of the funds.
• recipient

• Validation: Ensures the recipient address is valid. Cannot be the same as
info.sender.

• Impact: Receives the allocated amount.
• amount

• Validation: Must be at least ONE_INJ.
• Impact: The amount of INJ allocated to the recipient.

Branches and code coverage (including function calls)

Intended branches

• Create a new allocation if none exists.
Test coverage

• Update an existing allocation with the new amount and share price.
Test coverage

Negative behavior

• Fail if the contract is paused.
Negative test

• Fail if the sender is not whitelisted.
Negative test

• Fail if the recipient is the same as the sender.
Negative test

• Fail if the amount is less than ONE_INJ.
Negative test

• Fail if the recipient address is invalid.
Negative test

Zellic © 2024 ← Back to Contents Page 17 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Message: ExecuteMsg::Claim

This allows a user to withdraw all their expired claims.

Inputs

• info.sender
• Validation: The claim function verifies that the info.sender is a whitelisted
address.

• Impact: The user that withdraws their claims.

Branches and code coverage (including function calls)

Intended branches

• If the amount of claimed assets is greater than zero and the contract has the rewards
available, then it transfers the assets to the user.

Test coverage

Negative behavior

• Revert if there is nothing to claim.
Negative test

• Revert if the contract does not have a sufficient amount to transfer to the user.
Negative test

Message: ExecuteMsg::ClaimOwnership

This allows the pending owner to claim ownership of the contract, transferring privileges from the
current owner.

Inputs

• info.sender
• Validation: The claim_ownership function ensures that the info.sender
matches the pending owner set in the contract state.

• Impact: The sender becomes the new owner upon successful execution.

Branches and code coverage (including function calls)

Intended branches

• If theinfo.sendermatches thependingowner, ownership is transferredand thepending
owner is cleared.

Zellic © 2024 ← Back to Contents Page 18 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Test coverage

Negative behavior

• Fail if no pending owner is set.
Negative test

• Fail if the info.sender does not match the pending owner.
Negative test

Message: ExecuteMsg::AddUserToWhitelist

This adds a user to the whitelist.

Inputs

• info.sender
• Validation: The add_user_to_whitelist function verifies that the
info.sender is an agent.

• Impact: Ensures only authorized agents can add users to the whitelist.
• user

• Validation: The user address is validated using deps.api.addr_validate.
Additionally, it ensures the user is not already whitelisted by checking their
current status.

• Impact: Specifies the user to be added to the whitelist, changing their status.

Branches and code coverage (including function calls)

Intended branches

• If the user address is valid and not already whitelisted, they are added to the whitelist.
Test coverage

Negative behavior

• Fail if the info.sender is not an agent.
Negative test

• Fail if the user address is invalid.
Negative test

• Fail if the user is already whitelisted.
Negative test

Zellic © 2024 ← Back to Contents Page 19 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Message: ExecuteMsg::CompoundRewards

This restakes rewards from all validators and sweeps contract rewards back into the default valida-
tor while handling treasury fees.

Inputs

• Noexplicit user inputs— the function operates based on the contract's internal state and
validators.

Branches and code coverage (including function calls)

Intended branches

• Successfully restake rewards and sweep contract rewards when rewards exist.
Test coverage

• Calculate feesbasedon staker_info.feeandmint treasury shares if calculated fees are
greater than zero.

Test coverage

Negative behavior

• Return early if no rewards are available (total_rewards == 0).
Negative test

Message: ExecuteMsg::Deallocate

This deallocates INJ staking rewards from a specified recipient.

Inputs

• info.sender
• Validation: Verified to ensure the sender iswhitelisted. Confirms that the con-
tract is not paused.

• Impact: Acts as the deallocator of the funds.
• recipient

• Validation: Ensures the recipient address is valid. Checks that the recipient
has an existing allocation from the sender.

• Impact: Has their allocation reduced or removed.
• amount

• Validation: Must not exceed the current allocation to the recipient. Remaining
allocationmust either be zero or at least ONE_INJ.

• Impact: The amount of INJ removed from the allocation.

Zellic © 2024 ← Back to Contents Page 20 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Branches and code coverage (including function calls)

Intended branches

• Deallocate the amount from the recipient.
Test coverage

• Remove the allocation entirely if the remaining amount is zero.
Test coverage

• Update the allocation with the reduced amount while preserving the share price.
Test coverage

Negative behavior

• Fail if the contract is paused.
Negative test

• Fail if the sender is not whitelisted.
Negative test

• Fail if the recipient address is invalid.
Negative test

• Fail if no allocation exists between the sender and recipient.
Negative test

• Fail if the amount exceeds the current allocation.
Negative test

• Fail if the remaining allocation is nonzero but less than ONE_INJ.
Negative test

Message: ExecuteMsg::DisableValidator

This allows the admin to disable a previously enabled validator. Disabled validators cannot accept
new stakes, but existing stakes can still be unstaked andwithdrawn as usual.

Inputs

• info.sender
• Validation: The disable_validator function verifies that the info.sender is
the contract owner.

• Impact: N/A.
• validator_addr

• Validation: Ensures the validator exists in the contract's state and is currently
enabled.

• Impact: This validator address gets disabled.

Zellic © 2024 ← Back to Contents Page 21 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Branches and code coverage (including function calls)

Intended branches

• If validator_addr exists and is enabled, it is marked as disabled in the contract state.
Test coverage

Negative behavior

• Fail if validator_addr does not exist in the validator list.
Negative test

• Fail if validator_addr is already disabled.
Negative test

Message: ExecuteMsg::DistributeRewards

This distributes staking rewards from the sender to a specified recipient based on the current allo-
cation and share price.

Inputs

• info.sender
• Validation: Verified to ensure the sender is whitelisted. Confirmed to have at
least one allocation.

• Impact: Acts as the distributor of rewards.
• recipient

• Validation: Ensures the recipient address is valid. Confirms the sender has an
allocation to the specified recipient.

• Impact: Receives distributed rewards.
• in_inj

• Validation: N/A.
• Impact: Determines if the rewards should be distributed in INJ.

• info.funds
• Validation: If provided, ensures it is handled correctly, either as additional re-
wards or refunded if not required.

• Impact: May be redistributed or refunded to the sender.

Branches and code coverage (including function calls)

Intended branches

• Distribute rewards to the recipient based on the allocation and share price.
Test coverage

• Handle cases where no rewards are available for distribution.
Test coverage

Zellic © 2024 ← Back to Contents Page 22 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Refund unused INJ back to the sender.
Test coverage

Negative behavior

• Fail if the contract is paused.
Negative test

• Fail if the sender is not whitelisted.
Negative test

• Fail if the recipient address is invalid.
Negative test

• Fail if no allocations exist for the sender.
Negative test

• Fail if there is no allocation to the specified recipient.
Negative test

Message: ExecuteMsg::DistributeAll

This distributes staking rewards from the sender to all recipients based on the sender's allocations.
Rewards can be distributed in INJ or TruINJ.

Inputs

• info.sender
• Validation: Verified to ensure the sender is whitelisted. Confirmed to have at
least one allocation.

• Impact: Acts as the distributor of rewards.
• in_inj

• Validation: N/A.
• Impact: Determines whether rewards are distributed in INJ or TruINJ.

• info.funds
• Validation: If provided, ensures it is handled correctly, either as additional re-
wards or refunded if not required.

• Impact: May be redistributed or refunded to the sender.

Branches and code coverage (including function calls)

Intended branches

• Distribute rewards for all allocations in either INJ or TruINJ.
Test coverage

• Refund remaining INJ back to the sender after processing all allocations.
Test coverage

Zellic © 2024 ← Back to Contents Page 23 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Negative behavior

• Fail if the contract is paused.
Negative test

• Fail if the sender is not whitelisted.
Negative test

• Fail if the sender has no allocations.
Negative test

• Handle caseswhere no rewards are available for distribution, refunding any attached INJ
to the sender.

Negative test

Message: ExecuteMsg::SetDistributionFee

This allows the admin to set the treasury fee charged on rewards distribution.

Inputs

• info.sender
• Validation: The set_distribution_fee function verifies that the
info.sender is the owner.

• Impact: N/A.
• new_distribution_fee

• Validation: The fee is verified to be lower than 100%.
• Impact: The new fee is set to be this value.

Branches and code coverage (including function calls)

Intended branches

• If the fee is lower than 100%, it is updated in the state.
Test coverage

Negative behavior

• Fail if the fee is larger than 100%.
Negative test

Message: ExecuteMsg::EnableValidator

This allows the admin to re-enable a previously disabled validator, permitting new stakes to the val-
idator.

Zellic © 2024 ← Back to Contents Page 24 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Inputs

• info.sender
• Validation: The enable_validator function verifies that the info.sender is
the contract owner.

• Impact: N/A.
• validator_addr

• Validation: Ensures the validator exists in the contract's state and is currently
disabled.

• Impact: This is the validator address that is enabled.

Branches and code coverage (including function calls)

Intended branches

• If validator_addr exists and is disabled, it is marked as enabled in the contract state.
Test coverage

Negative behavior

• Fail if validator_addr does not exist in the validator list.
Negative test

• Fail if validator_addr is already enabled.
Negative test

Message: ExecuteMsg::Pause

This allows the admin to pause the contract, preventing user operations until it is resumed.

Inputs

• info.sender
• Validation: The pause function verifies that the info.sender is the contract
owner.

• Impact: N/A.

Branches and code coverage (including function calls)

Intended branches

• If the contract is not already paused, it is marked as paused in the contract state.
Test coverage

Negative behavior

Zellic © 2024 ← Back to Contents Page 25 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Fail if the contract is already paused.
Negative test

Message: ExecuteMsg::SetPendingOwner

This allows the current owner to set a pending owner. The pending owner has no privileges until
explicitly accepted.

Inputs

• info.sender
• Validation: The set_pending_owner function verifies that the info.sender is
the current owner.

• Impact: N/A.
• new_owner

• Validation: The provided new_owner address is validated to ensure it is in a
proper address format.

• Impact: The value that new_owner is set to.

Branches and code coverage (including function calls)

Intended branches

• If new_owner is valid, it is saved as the pending owner in the state.
Test coverage

Negative behavior

• Fail if new_owner is not a valid address.
Negative test

Message: ExecuteMsg::RemoveAgent

This removes an agent from thewhitelist.

Inputs

• info.sender
• Validation: The remove_agent function verifies that the info.sender is an ex-
isting agent.

• Impact: Ensures only authorized agents can initiate the removal of other
agents from thewhitelist.

• agent_to_remove

Zellic © 2024 ← Back to Contents Page 26 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Validation: The agent_to_remove address is validated using
deps.api.addr_validate. Additionally, the address must not belong to
the owner andmust already exist in the whitelist.

• Impact: Specifies the agent to be removed, affecting the whitelist state.

Branches and code coverage (including function calls)

Intended branches

• If the agent_to_remove address is valid, not the owner, and exists in the whitelist, it is
removed.

Test coverage

Negative behavior

• Fail if the info.sender is not an agent.
Negative test

• Fail if the agent_to_remove address is invalid.
Negative test

• Fail if the agent_to_remove address belongs to the owner.
Negative test

• Fail if the agent_to_remove address is not in the whitelist.
Negative test

Message: ExecuteMsg::SetDefaultValidator

This allows the admin to set a given validator as the new default validator.

Inputs

• info.sender
• Validation: The set_default_validator function verifies that the
info.sender is the owner.

• Impact: N/A.
• new_default_validator_addr

• Validation: The address is verified to ensure it belongs to a valid validator and
that it is enabled.

• Impact: Default validator gets updated to this address.

Branches and code coverage (including function calls)

Intended branches

• If new_default_validator_addr is valid, it is updated as the new default validator.

Zellic © 2024 ← Back to Contents Page 27 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Test coverage

Negative behavior

• Fail if new_default_validator_addr is not a valid validator address.
Negative test

Message: ExecuteMsg::SetFee

This allows the admin to set the treasury fee charged on rewards.

Inputs

• info.sender
• Validation: The set_fee function verifies that the info.sender is the owner.
• Impact: N/A.

• new_fee
• Validation: The fee is verified to be lower than 100%.
• Impact: The fee is set to new_fee.

Branches and code coverage (including function calls)

Intended branches

• If the fee is lower than 100%, it is updated in the state.
Test coverage

Negative behavior

• Fail if the fee is larger than 100%.
Negative test

Message: ExecuteMsg::SetMinimumDeposit

This allows the admin to set theminimum INJ amount a user can deposit.

Inputs

• info.sender
• Validation: Theset_min_deposit functionverifies that theinfo.sender is the
owner.

• Impact: N/A.
• new_min_deposit

• Validation: The amount is verified to be greater than 1 INJ.

Zellic © 2024 ← Back to Contents Page 28 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Impact: Theminimum deposit is set to this value.

Branches and code coverage (including function calls)

Intended branches

• If the amount is larger than 1 INJ, it is updated in the state.
Test coverage

Negative behavior

• Fail if the amount is lower than 1 INJ.
Negative test

Message: ExecuteMsg::SetTreasury

This allows the admin to set the treasury address.

Inputs

• info.sender
• Validation: The set_treasury function verifies that the info.sender is the
owner.

• Impact: N/A.
• new_treasury

• Validation: The provided new_treasury address is validated to ensure it is a
proper address format.

• Impact: The treasury address is set to this value.

Branches and code coverage (including function calls)

Intended branches

• If the new_treasury address is valid, it is updated in the state.
Test coverage

Negative behavior

• Fail if new_treasury is not a valid address.
Negative test

Message: ExecuteMsg::Stake

This allowswhitelisted users to stake their INJ on the default validator.

Zellic © 2024 ← Back to Contents Page 29 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Inputs

• info.sender
• Validation: The stake function verifies that the info.sender is a whitelisted
address.

• Impact: This is the address that recieves TruINJ.
• info.funds

• Validation: The internal_stake function verifies that exactly one coin (INJ)
was sent.

• Impact: The amount of assets to stake.

Branches and code coverage (including function calls)

Intended branches

• Calculates the exchange rate as per the total INJ staked, calculates the rewards and the
contract rewards available, andmints shares to the user based on that exchange rate.

Test coverage
• Therewards fromthevalidatorare increased in theCONTRACT_REWARDSstorage tobeused
later.

Test coverage
• The treasury is minted some fee (TruINJ) as a percentage of the validator rewards.

Test coverage

Negative behavior

• The transaction should revert if the caller is not whitelisted.
Negative test

• The transaction should revert if the contract is paused.
Negative test

• The transaction should revert if the amount of INJ staked is less than the min_deposit.
Negative test

Message: ExecuteMsg::StakeToSpecificValidator

This allowswhitelisted users to stake their INJ on the provided validator.

Inputs

• info.sender
• Validation: The stake function verifies that the info.sender is a whitelisted
address.

• Impact: This is the address that receives TruINJ.
• info.funds

Zellic © 2024 ← Back to Contents Page 30 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• Validation: The internal_stake function verifies that exactly one coin (INJ)
was sent.

• Impact: The amount of assets to stake.
• validator_addr

• Validation: The internal_stake function verifies that the validator is
whitelisted.

• Impact: The validator onwhich the user wants to stake.

Branches and code coverage (including function calls)

Intended branches

• Calculates the exchange rate as per the total INJ staked, calculates the rewards and the
contract rewards available, andmints shares to the user based on that exchange rate.

Test coverage
• Therewards fromthevalidatorare increased in theCONTRACT_REWARDSstorage tobeused
later.

Test coverage
• The treasury is minted some fee (TruINJ) as a percentage of the validator rewards.

Test coverage

Negative behavior

• The transaction should revert if the caller is not whitelisted.
Negative test

• The transaction should revert if the contract is paused.
Negative test

• The transaction should revert if the validator is not whitelisted.
Negative test

• The transaction should revert if the amount of INJ staked is less than the min_deposit.
Negative test

Message: ExecuteMsg::Unpause

This allows the admin to unpause the contract, resuming normal user operations.

Inputs

• info.sender
• Validation: The unpause function verifies that the info.sender is the contract
owner.

• Impact: N/A.

Zellic © 2024 ← Back to Contents Page 31 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Branches and code coverage (including function calls)

Intended branches

• If the contract is paused, it is marked as unpaused in the contract state.
Test coverage

Negative behavior

• Fail if the contract is not currently paused.
Negative test

Message: ExecuteMsg::Unstake

This allowswhitelisted users to unstake from the default validator.

Inputs

• info.sender
• Validation: The stake function verifies that the info.sender is a whitelisted
address.

• Impact: This is the address that unstakes the TruINJ and could claim the INJ.
• amount

• Validation: The internal_unstake function verifies that the value is greater
than zero and less than themaximum assets that the user could withdraw.

• Impact: The amount of assets to unstake.

Branches and code coverage (including function calls)

Intended branches

• Calculates the exchange rate as per the total INJ staked, calculates the rewards and the
contract rewards available, and creates a claim based on that exchange rate.

Test coverage
• If the assets to unstake are greater than the validator's total staked assets, then the ex-
cess assets are taken from the CONTRACT_REWARDS, which is then updated.

Test coverage
• The treasury is minted some fee (TruINJ) as a percentage of the validator rewards.

Test coverage

Negative behavior

• The transaction should revert if the caller is not whitelisted.
Negative test

• The transaction should revert if the contract is paused.
Negative test

Zellic © 2024 ← Back to Contents Page 32 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

• The transaction should revert if the amount value is greater than the maximum value of
assets that the user could withdraw, or it should revert if the shares to burn for that user
are zero.

Negative test

Message: ExecuteMsg::UnstakeFromSpecificValidator

This allowswhitelisted users to unstake from a specified validator.

Inputs

• info.sender
• Validation: The stake function verifies that the info.sender is a whitelisted
address.

• Impact: This is the address that unstakes the TruINJ and could claim the INJ.
• amount

• Validation: The internal_unstake function verifies that the value is greater
than zero and less than themaximum assets that the user could withdraw.

• Impact: The amount of assets to unstake.
• validator_addr

• Validation: The internal_unstake function verifies that the validator is
whitelisted.

• Impact: The validator fromwhich the user wants to unstake.

Branches and code coverage (including function calls)

Intended branches

• Calculates the exchange rate as per the total INJ staked, calculates the rewards and the
contract rewards available, and creates a claim based on that exchange rate.

Test coverage
• If the assets to unstake are greater than the validator's total staked assets, then the ex-
cess assets are taken from the CONTRACT_REWARDS, which is then updated.

Test coverage
• The treasury is minted some fee (TruINJ) as a percentage of the validator rewards.

Test coverage

Negative behavior

• The transaction should revert if the caller is not whitelisted.
Negative test

• The transaction should revert if the contract is paused.
Negative test

• The transaction should revert if the validator is not whitelisted.

Zellic © 2024 ← Back to Contents Page 33 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

Negative test
• The transaction should revert if the amount value is greater than the maximum value of
assets that the user could withdraw, or it should revert if the shares to burn for that user
are zero.

Negative test

Zellic © 2024 ← Back to Contents Page 34 of 35

TruFin Injective Staker Smart Contract Security Assessment November 19, 2024

5. Assessment Results At the time of our assessment, the reviewed codewas not deployed to theMainnet.

During our assessment on the scoped TruFin Injective Staker contracts, we discovered two find-
ings. No critical issues were found. One finding was of medium impact and the other finding was
informational in nature.

5.1. Disclaimer

This assessment does not provide any warranties about finding all possible issues within its scope;
in other words, the evaluation results do not guarantee the absence of any subsequent issues. Zel-
lic, of course, also cannot make guarantees about any code added to the project after the version
reviewed during our assessment. Furthermore, because a single assessment can never be consid-
ered comprehensive, we always recommendmultiple independent assessments paired with a bug
bounty program.

For each finding, Zellic provides a recommended solution. All code samples in these recommen-
dations are intended to convey how an issue may be resolved (i.e., the idea), but they may not be
tested or functional code. These recommendations are not exhaustive, andwe encourage our part-
ners to consider them as a starting point for further discussion. We are happy to provide additional
guidance and advice as needed.

Finally, the contents of this assessment report are for informational purposes only; do not construe
any information in this report as legal, tax, investment, or financial advice. Nothing contained in this
report constitutes a solicitation or endorsement of a project by Zellic.

Zellic © 2024 ← Back to Contents Page 35 of 35

	About Zellic
	Overview
	Executive Summary
	Goals of the Assessment
	Non-goals and Limitations
	Results

	Introduction
	About TruFin Injective Staker
	Methodology
	Scope
	Project Overview
	Project Timeline

	Detailed Findings
	Unstake could be blocked for certain users
	Erroneous mint-fee message

	Threat Model
	Module: Injective-staker/contract.rs

	Assessment Results
	Disclaimer

