
SMART CONTRACT AUDIT

March 9th 2023 | v.	1.0

score

98

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

TruFin Smart Contract Audit

This document outlines the overall security of the TruFin smart contracts evaluated by the
Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the TruFin smart contract codebase
for quality, security, and correctness.

Contract Status

low Risk

Testable Code

97% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the TruFin team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

2

TruFin Smart Contract Audit

5Protocol Overview

9Complete​ ​Analysis

13Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by Zokyo Security

15Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by the TruFin team

4Executive Summary

8Structure​ ​and​ ​Organization​ ​of​ ​the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

TruFin Smart Contract Audit

The source code of the smart contract was taken from the TruFin repository:  
https://github.com/TruFin-io/staker-audit

Branch: master

Initial commit: 71e300d31ad068f4118752f5f94cc571b086f6f1

Final commit: b2e4f7e882dcbac970bd9e63369f7147bb88813b

Within the scope of this audit, the team of auditors reviewed the following contract(s):

StakerStorage.sol

Staker.sol

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contract logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of TruFin smart contracts. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Hardhat testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

4

TruFin Smart Contract Audit

Executive Summary
 Zokyo Security received a set of contracts that represents a Trufin staker protocol. There
were two contracts within the audit scope: Staker.sol and StakerStorage.sol. Staking allows
users to deposit their Matic tokens on Ethereum mainnet and receive shares in exchange.
Matic is then invested into Polygon PoS Staking Contract, allowing staking contract to earn
rewards which are then distributed among the users of the protocol. Thus auditors needed
to not only analyze smart contracts against the list of common vulnerabilities, gas
optimization and detect any possible issues with the contract but also validate that
Staker.sol interacts with Polygon Staking in a correct and safe way.

 During the manual audit, auditors have found several informational and low issues, as well
as one medium issue. The medium issue described the presence of a whitelist in the smart
contract. In case users had deposited Matic tokens while they were whitelisted, they
wouldn’t be able to withdraw them if users were removed from whitelist. Trufin team has
verified that such functionality is necessary in case users are put on the sanction list they
shouldn’t be able to interact with the protocol any longer. Other issues were connected to
lack of parameters validation, lack of documentation and usage of custom errors. Trufin
team has successfully fixed all of them. Also, one of the informational issues was originally
marked as high and was connected to the unavailability of deploying a staking smart
contract with any other token but Matic due to the design of stakeClaimedRewards()
function, which performs a transfer of zero Matic from zero address. Since most of the
ERC-20 tokens forbid direct transfers from zero address, such approach won’t work with
them. However it works fine in the current implementation where ERC-20 Matic on Ethereum
mainnet is used. The issue was marked as info later after Trufin team has verified that only
Matic would be used.

 Zokyo Security team has also prepared a set of unit tests on Ethereum mainnet-fork in
order to validate that staker smart contract interacts with Polygon staking correctly. Besides
testing a common flow of the protocol such as deposits and withdrawals, auditors have also
validated the interaction with 3rd party contract on mainnet-fork, calculation of shares price,
restaking of rewards and withdrawal of profit.

 The overall security of smart contracts is high enough. Contracts are well-written and
tested both by Trufin team and Zokyo Security team. During the audit Trufin team has also
added sufficient documentation that describes all the aspects of smart contract.

TruFin staking scheme

5

trufin Smart Contract Audit

Staker.sol

uint256 _amount --
amount of staking
tokens to deposit.

Checks that total
stake <= cap

Calculates share
increase

Transfers tokens
from user to contract

uint256 _unbondNonce --
nonce from withdraw request

to claim pending tokens.

deposit()

Checks that
msg.sender == user

Unclaims tokens
from ValidatorShare

contract

Whitelisted users

withdrawClaim()

Whitelisted users

Calculates new
shares that should

be minted

Restakes using
restake() function on

ValidatorShare
contract

Transfers
tokens to user

Stakes tokens to
ValidatorShare
contract using

buyVoucher function

compound
Rewards()

Anyone

uint256 _amount -- amount
of staking tokens to request

to withdraw.

Checks that
amountFromShares

>= _amount

Checks that
_amount > 0

Calculate share
decrease

Unbonds tokens from
ValidatorShare

contract

Stores unbondNonce
to withdraw tokens

later for user

withdrawRequest()

Whitelisted users

TruFin staking scheme

6

Propchain Smart Contract Audit

Deposit

Whitelisted
users

Staker

ValidatorShare

User Tokens

SharesValidatorShare

Staker

Rewardsrestake()

Goes to
ValidatorShare

Mints shares
for user

Transfers stake
tokens

Stake tokens

Restake mints new shares

Rewards restakes back

to ValidatorShare

Token flow

TruFin staking scheme

7

Propchain Smart Contract Audit

Request Withdraw and Withdraw

Whitelisted
users

Staker

ValidatorShare

Requests
withdraw

Unbond staking

Whitelisted
users

Staker

ValidatorShare

Claim
withdraw

W
it

hd
ra

w
 t

ok
en

s

to

 u
se

r

Tr
an

sf
er

to

ke
ns Unstake tokens

Staker

ValidatorShareShares

User Tokens +
Rewards

Burns user's
shares

Tokens return back to user

depending on share price

Token flow

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational​

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For ease of navigation, the following sections are arranged from the most to the least critical
ones. Issues are tagged as “Resolved” or “Unresolved” depending on whether they have
been fixed or addressed. The issues tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

8

TruFin Smart Contract Audit

Complete​ ​Analysis

Medium-1 Verified

Un-whitelisted users can’t withdraw their funds.

Staker.sol: withdrawRequest(), withdrawClaim().

Only whitelisted users can deposit, request or claim withdrawals. Thus in case a user has
deposited while he was whitelisted and then later he was removed from whitelist, he won’t
have access to his funds and will withdraw them.

Recommendation:

Allow users who were whitelisted and deposited to withdraw tokens even if they were
removed from the whitelist.

From client:

According to the Trufin team, un-whitelisted users should be able to withdraw funds since
they can be removed from the whitelist in case they are put on OFAC sanctions list and
shouldn’t interact with the protocol any longer.

9

TruFin Smart Contract Audit

low-1 resolved

Parameters lack validation.

Staker.sol: initialize() - validate parameters before deploy.

Setter functions - setStakingToken(), setStakeManagerContract(),
setValidatorShareContract(), setWhitelist(), setTreasury(), setCap().

setPhi() - validate that function argument is less or equal to phiPrecision constant.

It is recommended to validate that address parameters are not zero addresses so that
contract will work without issues.

Recommendation:

Validate functions parameters.

From client:

Validation of phi was added. As for address validation, setting a zero address might be a
valid case, thus validation is unnecessary.

10

TruFin Smart Contract Audit

Info-1 resolved

Custom errors should be used.

Starting from the 0.8.4 version of Solidity it is recommended to use custom errors instead of
storing error message strings in storage and use “require” statements. Using custom errors is
more efficient in terms of gas spending and increases code readability.

Recommendation:

Use custom errors.

Info-2 resolved

Lack of documentation.

Adding NatSpec to contract functions and variables will make it more understandable about
functions and variables. As an example, a contract uses a specific token for staking. In this
case, having documentation (NatSpec) in the contract description and function would be
helpful, where a token will be used.

Recommendation:

Add NatSpec documentation.

Post-audit:

A detailed NatSpec documentation was added.

11

TruFin Smart Contract Audit

Info-3 Verified

Dangerous transfer call.

Staker.sol: stakeClaimedRewards().

Function stakeClaimedRewards is invoking _deposit() function with zero address as
parameter. Later in _deposit() function invokes safeTransferFrom which transfers zero
amount of token from zero address. Though it works fine in fork tests, but if try to use any
other token rather than MATIC with transferFrom, transaction will fail as it is not allowed to
transfer from zero address. Though current implementation works fine with MATIC on
Ethereum network, in case of other tokens being used, transactions fail.

Recommendation:

Validate that if _user is zero address in _deposit() function, it should skip safeTransferFrom
OR validate that contract should only support MATIC.

From client:

Trufin team has verified that smart contract is supposed to interact only with MATIC on
Ethereum network.

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

StakerStorage.sol Staker.sol

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

12

TruFin Smart Contract Audit

Staker
Deposit operations
✓ Should deposit (402ms)
✓ Should deposit twice (549ms)
✓ Should deposit (2 users) (537ms)
✓ Should deposit zero amount (232ms)
✓ Shoudn't deposit more than CAP (85ms)
Rewards operations
✓ Should simulate `SubmitCheckpoint` transaction on RootChainProxy (6250ms)
✓ Should compound unclaimed rewards (5890ms)
✓ Should withdraw after compound unclaimed rewards (6171ms)
✓ Should compound unclaimed rewards (2 users) (6014ms)
✓ Shouldn't compound 0 rewards (241ms)
Withdraw operations
✓ Should withdraw part (443ms)
✓ Should withdraw all (412ms)
✓ Should withdraw parts twice (597ms)
✓ Should withdraw + stakeClaimedRewards (6448ms)
✓ Shouldn't withdraw zero amount (38ms)
✓ Shouldn't withdraw more than deposited (217ms)
WithdrawClaim operations
✓ Shouldn't claim without requested withdrawal (42ms)
✓ Shouldn't claim with incomplete withdrawal period (48ms)
✓ Shouldn't claim with non-existent unbond nonce
✓ Shouldn't claim already claimed withdrawal (130ms)
✓ Should withdrawClaim (197ms)
ClaimList operations
✓ Shouldn't claim if one from list has not matured (148ms)
✓ Shouldn't claim list when one has already been claimed (193ms)
✓ Shouldn't claim list when one request from list was from different user (100ms)

As a part of our work assisting TruFin in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the TruFin
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

13

TruFin Smart Contract Audit

✓ Should claimList (205ms)
✓ Should claim two of three from list (149ms)
✓ Should claim one of three from list (77ms)
Additional shares calculation check
✓ Should calculate shares correctly (1265ms)
✓ Should deposit user's funds + amount that was previously on contract
✓ Should withdraw more than deposited after share price increase

30 passing

14

TruFin Smart Contract Audit

StakerStorage.sol

All files

FILE % STMTS % BRANCH % FUNCS

Staker.sol

100

94.3

100

77.3

100

95.4

97.15 88.65 97.7

Staker
Owner: Initial State
✓ initialize (131ms)
Owner: Setters
✓ setStakingToken (112ms)
✓ setStakeManagerContract (95ms)
✓ setValidatorShareContract (87ms)
✓ setWhitelist (75ms)
✓ setTreasury (82ms)
✓ setCap (83ms)
✓ setPhi (77ms)
User: deposit
✓ single deposit (396ms)
✓ repeated deposits (604ms)
✓ multiple account deposits (527ms)
✓ deposit zero matic (196ms)
✓ try depositing more than the cap (68ms)
Vault: Simulate rewards accrual
✓ Simulating `SubmitCheckpoint` transaction on RootChainProxy (6659ms)
Vault: compound reward
✓ rewards compounded correctly (compoundRewards: using unclaimed rewards) (6241ms)
✓ rewards compounded correctly (stakeClaimedRewards: using claimed rewards) (6385ms)
✓ try compounding rewards with rewards equal to zero (281ms)
User: withdrawRequest
✓ initiate a partial withdrawal (469ms)
✓ initiate a complete withdrawal (443ms)
✓ initiate multiple partial withdrawals (697ms)
✓ initiate withdrawal with rewards wip (8136ms)
✓ try initiating a withdrawal of size zero (63ms)
✓ try initiating withdrawal of more than deposited (233ms)

As a part of our work assisting TruFin in verifying the correctness of their contract code, our
team has checked the complete set of tests prepared by the TruFin team.

We need to mention that the original code has a significant original coverage with testing
scenarios provided by the TruFin team. All of them were also carefully checked by the team
of auditors.

Tests written by the TruFin team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

15

TruFin Smart Contract Audit

User: withdrawClaim
✓ try claiming withdrawal requested by different user (49ms)
✓ try claiming withdrawal requested 79 epochs ago (73ms)
✓ try claiming withdrawal with unbond nonce that doesn't exist
✓ try claiming already claimed withdrawal (90ms)
✓ successfully claim withdrawal requested 80 epochs ago with expected changes in state
and balances (107ms)
User: claimLis
✓ try to claim test unbonds when one has not matured (528ms)
✓ try to claim test unbonds when one has already been claimed (219ms)
✓ try to claim test unbonds when one has a different user (97ms)
✓ successfully claim three test unbonds consecutively (454ms)
✓ successfully claim two of three test unbonds inconsecutively (454ms)
✓ successfully claim just one withdrawal (325ms)

34 passing (58s)

16

TruFin Smart Contract Audit

StakerStorage.sol

All files

FILE % STMTS % BRANCH % FUNCS

Staker.sol

100

92.06

100

75

100

93.55

96.03 87.5 96.76

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

TruFin

TruFin

