
// Security Assessment 02.13.2025 - 02.21.2025

Solana Staker

TruFin

S o l a n a St a ke r - T r u F i n

Prepared by: HALBORN

Last Updated 03/06/2025

Date of Engagement by: February 13th, 2025 - February 21st, 2025

S u m m a r y

 OF ALL REPORTED FINDINGS HAVE BEEN ADDRESSED

ALL FINDINGS

3

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

1

TA B L E O F C O N T E N TS

1. Introduction
2. Assessment summary
3. Test approach and methodology
4. Risk methodology
5. Scope
6. Assessment summary & findings overview
7. Findings & Tech Details

7.1 Excessive trust assumption on agents
7.2 Staker initialization can be front-run
7.3 Single-signature authority for stake reallocations

8. Automated Testing

1 0 0%

1 . I n t r o d u c t i o n

TruFin engaged Halborn to conduct a security assessment on their Staker Solana program
beginning on February 14th, 2025, and ending on February, 26th, 2025. The security assessment
was scoped to the Solana program provided in TruFin-io/solana-staker-hb GitHub repository.
Commit hashes and further details can be found in the Scope section of this report.

The staker program is a staking vault solution built to streamline SOL staking - users deposit SOL
into a stake pool and receive a reward-bearing token (TruSOL) which entitles them to redeem their
staked SOL. The vault either lets users pick which validator to delegate their stake to or auto-
manages validator allocations for enhanced performance.

To maintain compliance and security, every depositor must be allowlisted. The program checks a
user's whitelist status at deposit time. In addition, the vault owner can pause deposits in
emergencies, replace the stake manager authority, and add or remove validators from the pool.

2. A s s e s s m e n t S u m m a r y

Halborn was provided 1 week, 4 days for the engagement and assigned one full-time security
engineer to review the security of the Solana Program in scope. The engineer is a blockchain and
smart contract security expert with advanced smart contract hacking skills, and deep knowledge
of multiple blockchain protocols.

The purpose of the assessment is to:

Identify potential security issues within the staker Solana Program.
Ensure that the program's functionality operates as intended.

In summary, Halborn identified some improvements to reduce the likelihood and impact of risks,
which were accepted and acknowledged by the TruFin team:

Explicitly verify the signer’s key is the owner’s key (rather than just any
agent). [Risk Accepted]

Ensure that the InitializeStaker instruction is called by a trusted and known
address, such as the program's upgrade authority. [Risk Accepted]

Require multiple signers in stake reallocation operations. [Acknowledged]

https://github.com/TruFin-io/solana-staker-hb

3. Te s t A p p r o a c h A n d M e t h o d o l o g y

Halborn performed a combination of a manual review of the source code and automated security
testing to balance efficiency, timeliness, practicality, and accuracy in regard to the scope of the
program assessment. While manual testing is recommended to uncover flaws in business logic,
processes, and implementation; automated testing techniques help enhance coverage of
programs and can quickly identify items that do not follow security best practices.

The following phases and associated tools were used throughout the term of the assessment:

Research into the architecture, purpose, and use of the platform.
Manual program source code review to identify business logic issues.
Mapping out possible attack vectors.
Thorough assessment of safety and usage of critical Rust variables and functions in scope

that could lead to arithmetic vulnerabilities.
Scanning dependencies for known vulnerabilities (cargo audit).
Local runtime testing (solana-test-framework).

4. R I S K M E T H O D O L O GY

Every vulnerability and issue observed by Halborn is ranked based on two sets of Metrics and a
Severity Coefficient. This system is inspired by the industry standard Common Vulnerability
Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability captures the ease and technical
means by which vulnerabilities can be exploited and Impact describes the consequences of a
successful exploit.

The Severity Coefficients is designed to further refine the accuracy of the ranking with two
factors: Reversibility and Scope. These capture the impact of the vulnerability on the environment
as well as the number of users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and 10 corresponding to
the highest security risk. This provides an objective and accurate rating of the severity of security
vulnerabilities in smart contracts.

The system is designed to assist in identifying and prioritizing vulnerabilities based on their level
of risk to address the most critical issues in a timely manner.

4.1 E X P L O I TA B I L I T Y

AT TAC K O R I G I N (AO) :

Captures whether the attack requires compromising a specific account.

AT TAC K C O ST (AC) :

Captures the cost of exploiting the vulnerability incurred by the attacker relative to sending a
single transaction on the relevant blockchain. Includes but is not limited to financial and
computational cost.

AT TAC K C O M P L E X I T Y (AX) :

Describes the conditions beyond the attacker’s control that must exist in order to exploit the
vulnerability. Includes but is not limited to macro situation, available third-party liquidity and
regulatory challenges.

M E T R I C S :

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Origin (AO) Arbitrary (AO:A)
Specific (AO:S)

1
0.2

M E

EXPLOITABILITY METRIC () METRIC VALUE NUMERICAL VALUE

Attack Cost (AC)
Low (AC:L)

Medium (AC:M)
High (AC:H)

1
0.67
0.33

Attack Complexity (AX)
Low (AX:L)

Medium (AX:M)
High (AX:H)

1
0.67
0.33

Exploitability is calculated using the following formula:

4.2 I M PA C T

C O N F I D E N T I A L I T Y (C) :

Measures the impact to the confidentiality of the information resources managed by the contract
due to a successfully exploited vulnerability. Confidentiality refers to limiting access to authorized
users only.

I N T E G R I T Y (I) :

Measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the
trustworthiness and veracity of data stored and/or processed on-chain. Integrity impact directly
affecting Deposit or Yield records is excluded.

AVA I L A B I L I T Y (A) :

Measures the impact to the availability of the impacted component resulting from a successfully
exploited vulnerability. This metric refers to smart contract features and functionality, not state.
Availability impact directly affecting Deposit or Yield is excluded.

D E P O S I T (D) :

Measures the impact to the deposits made to the contract by either users or owners.

Y I E L D (Y) :

Measures the impact to the yield generated by the contract for either users or owners.

M E T R I C S :

M E

E

E = m ∏ e

IMPACT METRIC () METRIC VALUE NUMERICAL VALUE

Confidentiality (C)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Integrity (I)

None (I:N)
Low (I:L)

Medium (I:M)
High (I:H)

Critical (I:C)

0
0.25
0.5

0.75
1

Availability (A)

None (A:N)
Low (A:L)

Medium (A:M)
High (A:H)

Critical (A:C)

0
0.25
0.5

0.75
1

Deposit (D)

None (D:N)
Low (D:L)

Medium (D:M)
High (D:H)

Critical (D:C)

0
0.25
0.5

0.75
1

Yield (Y)

None (Y:N)
Low (Y:L)

Medium (Y:M)
High (Y:H)

Critical (Y:C)

0
0.25
0.5

0.75
1

Impact is calculated using the following formula:

4.3 S E V E R I T Y C O E F F I C I E N T

R E V E RS I B I L I T Y (R) :

Describes the share of the exploited vulnerability effects that can be reversed. For upgradeable
contracts, assume the contract private key is available.

S C O P E (S) :

Captures whether a vulnerability in one vulnerable contract impacts resources in other contracts.

M E T R I C S :

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Reversibility ()
None (R:N)

Partial (R:P)
Full (R:F)

1
0.5

0.25

M I

I

I = max(m) +I

4
m − max(m)∑ I I

C

r

SEVERITY COEFFICIENT () COEFFICIENT VALUE NUMERICAL VALUE

Scope ()
Changed (S:C)

Unchanged (S:U)
1.25

1

Severity Coefficient is obtained by the following product:

The Vulnerability Severity Score is obtained by:

The score is rounded up to 1 decimal places.

SEVERITY SCORE VALUE RANGE

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

C

s

C

C = rs

S

S = min(10,EIC ∗ 10)

5. S C O P E

F ILES AND REPOSITORY

(a) Repository: solana-staker-hb

(b) Assessed Commit ID: a91e9b5

(c) Items in scope:

src/instructions/whitelist.rs
src/instructions/validators.rs
src/instructions/setters.rs
src/instructions/initialize.rs
src/instructions/staking.rs
src/instructions/mod.rs
src/constants.rs
src/error.rs
src/lib.rs
src/state/types.rs
src/state/events.rs
src/state/mod.rs

Out-of-Scope: Third-party dependencies and economic attacks.

Out-of-Scope: New features/implementations after the remediation commit IDs.

6 . AS S ES S M E N T S U M M A RY & F I N D I N G S OV E RV I E W

CRITICAL

0

HIGH

0

MEDIUM

0

LOW

2

INFORMATIONAL

1

https://github.com/TruFin-io/solana-staker-hb

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

EXCESSIVE TRUST ASSUMPTION ON AGENTS LOW
RISK ACCEPTED -

03/03/2025

STAKER INITIALIZATION CAN BE FRONT-RUN LOW
RISK ACCEPTED -

03/03/2025

SINGLE-SIGNATURE AUTHORITY FOR STAKE
REALLOCATIONS

INFORMATIONAL
ACKNOWLEDGED -

03/03/2025

7. F I N D I N G S & T EC H D E TA I L S

7.1 E XC ES S I V E T RU ST AS S U M P T I O N O N AG E N TS

// LOW

Description
The AddAgent and RemoveAgent instructions only require that the caller is already recognized as
an existing Agent account. No additional check (e.g., “is owner?”) is enforced before creating new
agents or removing them. Practically, if one agent is ever compromised or acts maliciously, the
attacker can spawn more malicious agents or remove legitimate ones—bypassing any need for
the actual owner’s key.

Code Location:
- solana-staker-hb/programs/staker/src/instructions/whitelist.rs

#[derive(Accounts)]#[derive(Accounts)]
#[event_cpi]#[event_cpi]
#[instruction(agent: Pubkey)]#[instruction(agent: Pubkey)]
pubpub structstruct AddAgentAddAgent<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 # #[[accountaccount((
 init init,,
 payer payer == signer signer,,
 space space == ANCHOR_DISCRIMINATORANCHOR_DISCRIMINATOR ++ AgentAgent::::INIT_SPACEINIT_SPACE,,
 seeds seeds == [[b"agent"b"agent",, agent agent..as_refas_ref(())]],,
 bump bump
))]]
 pubpub new_agent_account new_agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 # #[[accountaccount((
 seeds seeds == [[b"agent"b"agent",, signer signer..keykey(())..as_refas_ref(())]],,
 bump bump
))]]
 pubpub agent_account agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

/// Processes the `AddAgent` instruction/// Processes the `AddAgent` instruction
pubpub fnfn process_add_agentprocess_add_agent((ctxctx:: ContextContext<<AddAgentAddAgent>>,, agent agent:: PubkeyPubkey)) ->-> ResuResu
 emit_cpi!emit_cpi! {{

 AgentAddedAgentAdded {{
 new_agent new_agent:: agent agent
 }}
 }};;

 OkOk(((())))
}}

#[derive(Accounts)]#[derive(Accounts)]
#[event_cpi]#[event_cpi]
#[instruction(agent: Pubkey)]#[instruction(agent: Pubkey)]
pubpub structstruct RemoveAgentRemoveAgent<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 # #[[accountaccount((
 mutmut,,
 constraint constraint == agent agent !=!= access access..ownerowner..keykey(()) @@ ErrorCodeErrorCode::::CannotRemCannotRem
 seeds seeds == [[b"agent"b"agent",, agent agent..as_refas_ref(())]],,
 bump bump,,
 close close == signer signer
))]]
 pubpub agent_account_to_remove agent_account_to_remove:: AccountAccount<<'info'info,, AgentAgent>>,,

 # #[[accountaccount((
 seeds seeds == [[b"agent"b"agent",, signer signer..keykey(())..as_refas_ref(())]],,
 bump bump
))]]
 pubpub agent_account agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,

 # #[[accountaccount((
 seeds seeds == [[b"access"b"access"]],,
 bump bump
))]]
 pubpub access access:: AccountAccount<<'info'info,, AccessAccess>>,,
}}

/// Processes the `RemoveAgent` instruction/// Processes the `RemoveAgent` instruction
pubpub fnfn process_remove_agentprocess_remove_agent((ctxctx:: ContextContext<<RemoveAgentRemoveAgent>>,, agent agent:: PubkeyPubkey))
 emit_cpi!emit_cpi! {{
 AgentRemovedAgentRemoved {{
 removed_agent removed_agent:: agent agent
 }}
 }};;

 OkOk(((())))
}}

Moreover, the instructions for modifying user whitelist status (AddUserToWhitelist,
AddUserToBlacklist, ClearUserStatus) require only that the signer be an Agent. Thus, any
agent—if compromised—can whitelist arbitrary addresses or block legitimate users. This could
circumvent AML/KYC intentions or sabotage deposits from real customers.

Code Location:
- solana-staker-hb/programs/staker/src/instructions/whitelist.rs

#[derive(Accounts)]#[derive(Accounts)]
#[event_cpi]#[event_cpi]
#[instruction(user: Pubkey)]#[instruction(user: Pubkey)]
pubpub structstruct AddUserToWhitelistAddUserToWhitelist<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 # #[[accountaccount((
 init_if_needed init_if_needed,,
 constraint constraint == user_whitelist_account user_whitelist_account..status status !=!= WhitelistUserStatWhitelistUserStat
 payer payer == signer signer,,
 space space == ANCHOR_DISCRIMINATORANCHOR_DISCRIMINATOR ++ UserStatusUserStatus::::INIT_SPACEINIT_SPACE,,
 seeds seeds == [[b"user"b"user",, user user..as_refas_ref(())]],,
 bump bump
))]]
 pubpub user_whitelist_account user_whitelist_account:: AccountAccount<<'info'info,, UserStatusUserStatus>>,,

 # #[[accountaccount((
 seeds seeds == [[b"agent"b"agent",, signer signer..keykey(())..as_refas_ref(())]],,
 bump bump
))]]
 pubpub agent_account agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

/// Processes the `AddUserToWhitelist` instruction/// Processes the `AddUserToWhitelist` instruction
pubpub fnfn process_add_user_to_whitelistprocess_add_user_to_whitelist((ctxctx:: ContextContext<<AddUserToWhitelistAddUserToWhitelist>>,,
 letlet user_status user_status == &&mutmut ctx ctx..accountsaccounts..user_whitelist_accountuser_whitelist_account;;
 letlet old_status old_status == user_status user_status..statusstatus..cloneclone(());;
 user_status user_status..status status == WhitelistUserStatusWhitelistUserStatus::::WhitelistedWhitelisted;;
 emit_cpi!emit_cpi! {{
 WhitelistingStatusChangedWhitelistingStatusChanged {{

 user user,,
 old_status old_status,,
 new_status new_status:: WhitelistUserStatusWhitelistUserStatus::::WhitelistedWhitelisted
 }}
 }};;
 OkOk(((())))
}}

#[derive(Accounts)]#[derive(Accounts)]
#[event_cpi]#[event_cpi]
#[instruction(user: Pubkey)]#[instruction(user: Pubkey)]
pubpub structstruct AddUserToBlacklistAddUserToBlacklist<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 # #[[accountaccount((
 init_if_needed init_if_needed,,
 constraint constraint == user_whitelist_account user_whitelist_account..status status !=!= WhitelistUserStatWhitelistUserStat
 payer payer == signer signer,,
 space space == ANCHOR_DISCRIMINATORANCHOR_DISCRIMINATOR ++ UserStatusUserStatus::::INIT_SPACEINIT_SPACE,,
 seeds seeds == [[b"user"b"user",, user user..as_refas_ref(())]],,
 bump bump
))]]
 pubpub user_whitelist_account user_whitelist_account:: AccountAccount<<'info'info,, UserStatusUserStatus>>,,

 # #[[accountaccount((
 seeds seeds == [[b"agent"b"agent",, signer signer..keykey(())..as_refas_ref(())]],,
 bump bump
))]]
 pubpub agent_account agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

/// Processes the `AddUserToBlacklist` instruction/// Processes the `AddUserToBlacklist` instruction
pubpub fnfn process_add_user_to_blacklistprocess_add_user_to_blacklist((ctxctx:: ContextContext<<AddUserToBlacklistAddUserToBlacklist>>,,
 letlet user_status user_status == &&mutmut ctx ctx..accountsaccounts..user_whitelist_accountuser_whitelist_account;;
 letlet old_status old_status == user_status user_status..statusstatus..cloneclone(());;
 user_status user_status..status status == WhitelistUserStatusWhitelistUserStatus::::BlacklistedBlacklisted;;
 emit_cpi!emit_cpi! {{
 WhitelistingStatusChangedWhitelistingStatusChanged {{
 user user,,
 old_status old_status,,
 new_status new_status:: WhitelistUserStatusWhitelistUserStatus::::BlacklistedBlacklisted
 }}
 }};;

 OkOk(((())))
}}

#[derive(Accounts)]#[derive(Accounts)]
#[event_cpi]#[event_cpi]
#[instruction(user: Pubkey)]#[instruction(user: Pubkey)]
pubpub structstruct ClearUserStatusClearUserStatus<<'info'info>> {{
 #[account(mut)]#[account(mut)]
 pubpub signer signer:: SignerSigner<<'info'info>>,,

 # #[[accountaccount((
 init_if_needed init_if_needed,,
 constraint constraint == user_whitelist_account user_whitelist_account..status status !=!= WhitelistUserStatWhitelistUserStat
 payer payer == signer signer,,
 space space == ANCHOR_DISCRIMINATORANCHOR_DISCRIMINATOR ++ UserStatusUserStatus::::INIT_SPACEINIT_SPACE,,
 seeds seeds == [[b"user"b"user",, user user..as_refas_ref(())]],,
 bump bump
))]]
 pubpub user_whitelist_account user_whitelist_account:: AccountAccount<<'info'info,, UserStatusUserStatus>>,,

 # #[[accountaccount((
 seeds seeds == [[b"agent"b"agent",, signer signer..keykey(())..as_refas_ref(())]],,
 bump bump
))]]
 pubpub agent_account agent_account:: AccountAccount<<'info'info,, AgentAgent>>,,

 pubpub system_program system_program:: ProgramProgram<<'info'info,, SystemSystem>>,,
}}

/// Processes the `ClearUserStatus` instruction/// Processes the `ClearUserStatus` instruction
pubpub fnfn process_clear_user_statusprocess_clear_user_status((ctxctx:: ContextContext<<ClearUserStatusClearUserStatus>>,, user user:: PP
 letlet user_status user_status == &&mutmut ctx ctx..accountsaccounts..user_whitelist_accountuser_whitelist_account;;
 letlet old_status old_status == user_status user_status..statusstatus..cloneclone(());;
 user_status user_status..status status == WhitelistUserStatusWhitelistUserStatus::::NoneNone;;
 emit_cpi!emit_cpi! {{
 WhitelistingStatusChangedWhitelistingStatusChanged {{
 user user,,
 old_status old_status,,
 new_status new_status:: WhitelistUserStatusWhitelistUserStatus::::NoneNone
 }}
 }};;
 OkOk(((())))
}}

BVSS

AO:S/AC:L/AX:L/R:N/S:C/C:M/A:H/I:H/D:H/Y:H (3.6)

Recommendation
If the intended design is that only the owner can manage agent creation/removal, explicitly verify
the signer’s key is the owner’s key (rather than just any agent). Otherwise, clearly document that
any agent has the power to onboard/remove other agents, and ensure operational controls around
key management.

Regarding the whitelist mechanism, if more granular or multi-signature control over the whitelist
is desired (for compliance, risk, or administrative reasons), enforce either an “owner only” check or
a multi-agent threshold. Otherwise, explicitly document that any valid agent may set user
statuses.

Remediation Comment

RISK ACCEPTED: The TruFin team accepted the risk of this finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:C/C:M/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:C/C:M/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:C/C:M/A:H/I:H/D:H/Y:H
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:C/C:M/A:H/I:H/D:H/Y:H

7. 2 STA K E R I N I T I A L I Z AT I O N CA N B E F RO N T- RU N

// LOW

Description
Until InitializeStaker runs, there is no owner and no Access account. The first party to call
InitializeStaker becomes the de facto owner and creates the “owner’s agent.” This is standard
in many on-chain deployments but remains a risk if the deployer does not call it immediately (e.g.,
a race condition at launch).

Code Location:
- solana-staker-hb/programs/staker/src/instructions/initialize.rs

pubpub fnfn process_initialize_stakerprocess_initialize_staker((ctxctx:: ContextContext<<InitializeStakerInitializeStaker>>)) ->-> ResRes
 letlet access_control access_control == &&mutmut ctx ctx..accountsaccounts..accessaccess;;
 access_control access_control..owner owner == ctx ctx..accountsaccounts..owner_infoowner_info..keykey(());;
 access_control access_control..is_paused is_paused == falsefalse;;
 access_control access_control..stake_manager stake_manager == ctx ctx..accountsaccounts..stake_manager_infostake_manager_info..keykey((

 emit_cpi!emit_cpi!((StakerInitializedStakerInitialized {{
 owner owner:: ctx ctx..accountsaccounts..owner_infoowner_info..keykey(()),,
 stake_manager stake_manager:: ctx ctx..accountsaccounts..stake_manager_infostake_manager_info..keykey(()),,
 }}));;
 OkOk(((())))
}}

BVSS

AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:L/D:N/Y:N (3.1)

Recommendation
To mitigate these risks, it is recommended to ensure that the InitializeStaker instruction is
called by a trusted and known address, such as the program's upgrade authority, and that proper
access controls and validations are in place.

Remediation Comment

RISK ACCEPTED: The TruFin team accepted the risk of this finding.

https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:L/D:N/Y:N
https://www.halborn.com/portal/bvss?q=AO:A/AC:L/AX:L/R:N/S:C/C:N/A:N/I:L/D:N/Y:N

7. 3 S I N G L E- S I G N AT U R E AU T H O R I T Y FO R STA K E

R E A L LO CAT I O N S

// INFORMATIONAL

Description
The stake manager instructions (AddValidator, RemoveValidator, IncreaseValidatorStake,
DecreaseValidatorStake) allow the designated “stake manager” or “owner” to reallocate large
sums of staked SOL at will. While there is no direct path to withdraw SOL to an arbitrary address, a
compromised stake manager key can stake to poor validators or degrade yields for the pool.

Code Location (instructions):

AddValidator
RemoveValidator
IncreaseValidatorStake
DecreaseValidatorStake

BVSS

AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M (1.3)

Recommendation
Require multiple signers in stake reallocation operations. Additionally, create rules (caps, rate-
limits, or additional sign-offs) to mitigate the impact of compromised transactions.
Optionally, utilize a multi-signature wallet for sensitive accounts.

Remediation Comment

ACKNOWLEDGED: The TruFin team acknowledged this finding.

https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M
https://www.halborn.com/portal/bvss?q=AO:S/AC:L/AX:L/R:N/S:U/C:N/A:N/I:N/D:M/Y:M

8 . AU TO M AT E D T EST I N G

Static Analysis Report
Description
Halborn used automated security scanners to assist with detection of well-known security issues
and vulnerabilities. Among the tools used was cargo audit, a security scanner for vulnerabilities
reported to the RustSec Advisory Database. All vulnerabilities published in https://crates.io
are stored in a repository named The RustSec Advisory Database. cargo audit is a human-
readable version of the advisory database which performs a scanning on Cargo.lock. Security
Detections are only in scope. All vulnerabilities shown here were already disclosed in the above
report. However, to better assist the developers maintaining this code, the auditors are including
the output with the dependencies tree, and this is included in the cargo audit output to better
know the dependencies affected by unmaintained and vulnerable crates.

Cargo Audit Results

ID CRATE DESCCRIPTION

RUSTSEC-2024-0093 ed25519-dalek Double Public Key Signing Function Oracle Attack on ed255109-dalek

RUSTSEC-2024-0344 curve25519-dalek Timing variability in curve25519-dalek's Scalar29::sub/Scalar52::sub

Halborn strongly recommends conducting a follow-up assessment of the project either within six months or
immediately following any material changes to the codebase, whichever comes first. This approach is crucial for
maintaining the project’s integrity and addressing potential vulnerabilities introduced by code modifications.

