
Security Review Report
NM-0098 TruFin

(Jun 13, 2023)

NM-0098 - TruFin - SECURITY REVIEW

Contents
1 Executive Summary 2

2 Audited Files 3

3 Summary of Issues 3

4 Risk Rating Methodology 4

5 Issues 5
5.1 [Medium] Changing stakingTokenAddress will affect share pricing and staking calculations 5
5.2 [Medium] Inflation attack can lead to loss of value for depositors . 5
5.3 [Low] The setCap(...) function can set a cap lower than the current deposited amount . 5
5.4 [Info] Shadowed variables and functions . 6
5.5 [Best Practice] Boolean comparisons can be avoided . 6
5.6 [Best Practice] Usage of outdated solidity compiler . 6
5.7 [Best Practice] Using enum instead of arbitrary number for userType. 7
5.8 [Best Practices] Incorrect comment in reallocate(...) . 7
5.9 [Best Practices] NatSpec documentation refers to outdated variables . 7
5.10 [Best Practices] Solidity code style . 7
5.11 [Best Practices] Unnecessary storage write in deallocate(...) . 8

6 Documentation Evaluation 9

7 Test Suite Evaluation 10
7.1 Contracts Compilation Output . 10
7.2 Tests Output . 10
7.3 Code Coverage . 15
7.4 Slither . 15

8 About Nethermind 16

1

NM-0098 - TruFin - SECURITY REVIEW

1 Executive Summary
This document outlines the security review conducted by Nethermind for the TruFin protocol. TruFin provides access to MATIC staking on
Ethereum for institutions featuring auto-compounding of rewards and the ability to allocate rewards to other addresses. The protocol is
permissioned, ensuring that each user has passed know-your-customer (KYC) checks and that only whitelisted users can stake. A user’s
stake is represented by ERC4626 tokens which track the increase in value from the accrual of rewards.

The audited code comprises 1,324 lines of Solidity, with a code test coverage of 97.22% for the primary contract TruStakeMATICv2.
The TruFin team has provided detailed documentation explaining the protocol summary, deposit/withdraw flows, precision and rounding
choices, and rewards allocation/distribution.

The audit was performed using (a) manual analysis of the codebase, (b) automated analysis tools, (c) simulation of the smart contracts,
and (d) creation of test cases. Along this document, we report 11 points of attention, where 2 are classified as Medium, 1 is classified as
Low, and 8 are classified as Informational or Best Practice. The issues are summarized in Fig. 1.

This document is organized as follows. Section 2 presents the files in the scope of this audit. Section 3 summarizes the issues.
Section 4 discusses the risk rating methodology adopted for this audit. Section 5 details the issues. Section 6 discusses the documentation
provided by the client for this audit. Section 7 presents the compilation, tests, and automated tests. Section 8 concludes the document.

Medium

Low

InfoBest Practices
63.6%

Medium
18.2%

Low
9.1%

Info
9.1%

 Severity

(a)

Acknowledged
9.1%

Fixed
90.9%

 Status

(b)

Fig 1: Distribution of issues: Critical (0), High (0), Medium (2), Low (1), Undetermined (0), Informational (1), Best Practices (7).
Distribution of status: Fixed (10), Acknowledged (1), Mitigated (0), Unresolved (0)

Summary of the Audit

Audit Type Security Review
Initial Report June 5, 2023
Response from Client June 12, 2023
Final Report June 13, 2023
Methods Manual Review, Automated Analysis
Repository https://github.com/TruFin-io/staker-audit-april/
Commit Hash (Initial Audit) e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75
Branch (Review Audit) Branch: fixes-1
Documentation Provided protocol documentation (PDFs)
Documentation Assessment High
Test Suite Assessment High

2

https://nethermind.io
https://app.trufin.io/overview/trustake
https://github.com/TruFin-io/staker-audit-april/
https://github.com/TruFin-io/staker-audit-april/tree/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/
https://github.com/TruFin-io/staker-audit-april/tree/fixes-1
https://github.com/TruFin-io/staker-audit-april/tree/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/docs

NM-0098 - TruFin - SECURITY REVIEW

2 Audited Files

Contract LoC Comments Ratio Blank Total
1 main/TruStakeMATICv2.sol 915 412 45.0% 279 1606
2 main/TruStakeMATICv2Storage.sol 28 28 100.0% 20 76
3 helpers/MasterWhitelist.sol 295 258 87.5% 85 638
4 interfaces/IValidatorShare.sol 15 3 20.0% 13 31
5 interfaces/IStakeManager.sol 55 2 3.6% 21 78
6 interfaces/IMasterWhitelist.sol 16 39 243.8% 10 65

Total 1324 742 56.0% 428 2494

3 Summary of Issues

Finding Severity Update
1 Changing stakingTokenAddress will affect share pricing and staking calculations Medium Fixed
2 Inflation attack can lead to loss of value for depositors Medium Fixed
3 The setCap(...) function can set a cap lower than the current deposited amount Low Fixed
4 Shadowed variables and functions Info Fixed
5 Boolean comparisons can be avoided Best Practices Fixed
6 Usage of outdated solidity compiler Best Practices Fixed
7 Using enum instead of arbitrary number for userType . Best Practices Acknowledged
8 Incorrect comment in reallocate(...) Best Practices Fixed
9 NatSpec documentation refers to outdated variables Best Practices Fixed
10 Solidity code style Best Practices Fixed
11 Unnecessary storage write in deallocate(...) Best Practices Fixed

3

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2Storage.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/helpers/MasterWhitelist.sol
https://github.com/TruFin-io/staker-audit-april/tree/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/interfaces/IValidatorShare.sol
https://github.com/TruFin-io/staker-audit-april/tree/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/interfaces/IStakeManager.sol
https://github.com/TruFin-io/staker-audit-april/tree/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/interfaces/IMasterWhitelist.sol

NM-0098 - TruFin - SECURITY REVIEW

4 Risk Rating Methodology
The risk rating methodology used by Nethermind follows the principles established by the OWASP Foundation. The severity of each finding
is determined by two factors: Likelihood and Impact.

Likelihood measures how likely an attacker will uncover and exploit the finding. This factor will be one of the following values:

a) High: The issue is trivial to exploit and has no specific conditions that need to be met;

b) Medium: The issue is moderately complex and may have some conditions that need to be met;

c) Low: The issue is very complex and requires very specific conditions to be met.

When defining the likelihood of a finding, other factors are also considered. These can include but are not limited to Motive, opportunity,
exploit accessibility, ease of discovery, and ease of exploit.

Impact is a measure of the damage that may be caused if an attacker exploits the finding. This factor will be one of the following values:

a) High: The issue can cause significant damage such as loss of funds or the protocol entering an unrecoverable state;

b) Medium: The issue can cause moderate damage, such as impacts that only affect a small group of users or only a particular part
of the protocol;

c) Low: The issue can cause little to no damage, such as bugs that are easily recoverable or cause unexpected interactions that
cause minor inconveniences.

When defining the impact of a finding, other factors are also considered. These can include but are not limited to Data/state integrity, loss
of availability, financial loss, and reputation damage. After defining the likelihood and impact of an issue, the severity can be determined
according to the table below.

Severity Risk

Impact

High Medium High Critical
Medium Low Medium High
Low Info/Best Practices Low Medium
Undetermined Undetermined Undetermined Undetermined

Low Medium High
Likelihood

To address issues that do not fit a High/Medium/Low severity, Nethermind also uses three more finding severities: Informational, Best
Practices, and Undetermined.

a) Informational findings do not pose any risk to the application, but they carry some information that the audit team intends to
formally pass to the client;

b) Best Practice findings are used when some piece of code does not conform with smart contract development best practices;

c) Undetermined findings are used when we cannot predict the impact or likelihood of the issue.

4

https://nethermind.io
https://owasp.org
https://nethermind.io

NM-0098 - TruFin - SECURITY REVIEW

5 Issues

5.1 [Medium] Changing stakingTokenAddress will affect share pricing and staking cal-
culations

File(s): TruStakeMATICv2.sol

Description: In the TruStakeMATICv2 contract, it is possible to change the staking token through the function setStakingToken(...).
However, it does not consider that the ERC4626 private storage variable _asset won’t be changed. Most original functions that rely on
_asset have been overridden to use stakingTokenAddress, except for totalAssets(...). This means that when a new staking token
is used, totalAssets(...) will return the balance count for the original token used during initialization. The following functions use
totalAssets(...) and may be affected:

− sharePrice(...);

− _deposit(...);

− _withdrawRequest(...);

− compoundRewards(...);

Incorrect reported staking token balances through totalAssets(...) may affect share pricing and rewards and staking calculations.

Recommendation(s): Consider overriding the totalAssets(...) function to return the balance of stakingTokenAddress instead of _asset.

Status: Fixed

Update from the client: Setting the token address is now only possible at initialization time to prevent the issues evoked above.

5.2 [Medium] Inflation attack can lead to loss of value for depositors
File(s): TruStakeMATICv2.sol

Description: In the TruStakeMATICv2 contract, the initial depositor can use an inflation attack to cause the second depositor to pay more
than expected for their shares, leading to a loss of value. The steps to manipulate the pricing are shown below:

1. Attacker makes an initial deposit of 1 MATIC using the function deposit(. . .);

2. Attacker immediately requests for a withdrawal of 0.9 MATIC, leaving a small amount remaining;

3. Before the second depositor starts their deposit, the attacker directly transfers a large amount of MATIC to the contract (without
depositing);

After these steps, the second deposit will calculate pricing based on a higher share price since part of the pricing calculation is to check
the balance of assets on the contract, which has been manipulated due to a direct transfer.

Recommendation(s): Consider establishing a minimum remaining balance amount after withdrawal, and if a withdrawal leads to a
remaining amount less than this minimum, then withdraw the entire user’s balance.

Status: Fixed

Update from the client: We fixed this issue by not allowing users to leave small amounts in the vault.

5.3 [Low] The setCap(...) function can set a cap lower than the current deposited
amount

File(s): TruStakeMATICv2.sol

Description: The function setCap(...) is missing input validation to prevent the cap from being lower than the current deposited amount.
Without this check, the following logic in maxDeposit(...) could revert due to an underflow.

1 function maxDeposit(address) public view override returns (uint256) {
2 return cap - totalStaked();
3 }

Recommendation(s): Consider adding input validation to setCap(...) to prevent a cap smaller than the deposit amount from being set.

Status: Fixed

Update from the client: We check the cap is always set to be higher than the totalStaked.

5

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol

NM-0098 - TruFin - SECURITY REVIEW

5.4 [Info] Shadowed variables and functions
File(s): TruStakeMATICv2.sol

Description: The TruStakeMATICv2 contract contains some functions which have variables with the same name as storage variables or
functions from other imported contracts. This can lead to confusion where it may be unclear which data the variables are actually referring
to. A list of all the shadowing variables are presented below:

− distributeAll(...): Variable totalAllocated shadows storage variable TruStakeMATICv2Storage.totalAllocated;

− maxWithdraw(...): Argument owner shadows function OwnableUpgradeable.owner(...);

− maxRedeem(...): Argument owner shadows function OwnableUpgradeable.owner(...);

− getUserInfo(...): Argument _owner shadows storage variable OwnableUpgradeable._owner;

− withdraw(...): Argument owner shadows function OwnableUpgradeable.owner(...);

− redeem(...): Argument owner shadows function OwnableUpgradeable.owner(...);

Recommendation(s): Consider changing the names of the variables and arguments listed above to ensure they do not have the same
name as existing inherited functions or storage variables.

Status: Fixed

Update from the client: All shadowing variables have been renamed.

5.5 [Best Practice] Boolean comparisons can be avoided
File(s): TruStakeMATICv2.sol

Description: In the function allocate(...) boolean comparisons are used as below:

1 function allocate(
2 uint256 _amount,
3 address _recipient,
4 bool _strict
5) external onlyWhitelist nonReentrant {
6 if (_strict == true && allowStrict == false) {
7 revert StrictAllocationDisabled();
8 }
9 ...

10 }

Recommendation(s): Boolean comparisons can be simplified. The above can be simplified as below.

1 if (_strict && !allowStrict) {
2 revert StrictAllocationDisabled();
3 }

Status: Fixed

Update from the client: We removed the boolean comparison per the recommendation.

5.6 [Best Practice] Usage of outdated solidity compiler
File(s): contracts

Description: Solidity pragma version 0.8.14 is used in all contracts. Version 0.8.14 has some known optimizer-related bugs.

Recommendation(s): Consider using an updated and stable version like 0.8.18 of solidity.

Status: Fixed

Update from the client: The compiler has been updated to 0.8.19.

6

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/
https://medium.com/certora/overly-optimistic-optimizer-certora-bug-disclosure-2101e3f7994d

NM-0098 - TruFin - SECURITY REVIEW

5.7 [Best Practice] Using enum instead of arbitrary number for userType.
File(s): MasterWhitelist.sol

Description: In the contract MasterWhitelist, the userTypes in the events are declared by arbitrary numbers. It is mentioned in the
comments:

1 * @param userType can take values 0,1,2,3,4 if the address is a user, market maker, vault, lawyer, or swapManager
respectively↪

But it would be easier for readability to have enums instead of numbers to describe the user types and less prone to mistakes.

Recommendation(s): Consider using enums that describe the type of user.

Status: Acknowledged

Update from the client: Other parts of the system (on-chain and off-chain) are relying on these numbers today, so changing them will
require a more coordinated effort on our part. We’re also planning to add more KYC providers so we’ll make these changes at that time.

5.8 [Best Practices] Incorrect comment in reallocate(...)

File(s): TruStakeMATICv2.sol

Description: In TruStakeMATICv2, the function reallocate(...), if you are reallocating to a user that you already have an allocation for,
the recipients array, is searched for the _oldRecipient and replaced by the _newRecipient by directly overwriting. However, the comment
appears to be copied from a different section of the code, as it refers to popping an item in the array, which does not happen in this part of
the code.

Recommendation(s): Consider updating the comment to accurately reflect the approach to updating the recipients array.

Status: Fixed

Update from the client: This comment has been updated, along with other comments in the contract, to more accurately reflect the code.

5.9 [Best Practices] NatSpec documentation refers to outdated variables
File(s): TruStakeMATICv2.sol

Description: In TruStakeMATICv2 the function sharePrice(...) has NatSpec documentation that refers to two return variables priceNum
and priceDenom. However, the variable names and all other returned data from sharePrice(...) refer to the variables as globalPriceNum
and globalPriceDenom.

1 /// @return priceNum numerator of share price, divide by (priceDenom * 1e18) to get actual floating point share price
2 /// @return priceDenom denominator of share price
3 function sharePrice() public view returns (uint256, uint256) {
4 ...
5 //
6 // @audit Returned variable names do not align with NatSpec
7 //
8 uint256 globalPriceNum = totalCapitalTimesPhiPrecision * 1e18;
9 uint256 globalPriceDenom = totalSupply() * phiPrecision;

10 return (globalPriceNum, globalPriceDenom);
11 }

Recommendation(s): Consider updating the NatSpec documentation for sharePrice(...) to accurately reflect the return variable names.

Status: Fixed

Update from the client: All NatSpec docs have been updated.

5.10 [Best Practices] Solidity code style
File(s): FileName

Description: The following is a collection of Solidity code style inconsistencies that do not align with the current recommended style guide.

− The constant phiPrecision should be all uppercase with underscores separating words;

Recommendation(s): Consider adjusting the code to follow the Solidity style guide.

Status: Fixed

Update from the client: We formatted the contract to be more consistent with the Solidity style guide.

7

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/helpers/MasterWhitelist.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol
https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/*
https://docs.soliditylang.org/en/v0.8.19/style-guide.html

NM-0098 - TruFin - SECURITY REVIEW

5.11 [Best Practices] Unnecessary storage write in deallocate(...)

File(s): TruStakeMATICv2.sol

Description: In TruStakeMATICv2, the function deallocate(...) has a check to see if the callers totalAllocated amount needs to be
cleared entirely or reduced and adjusted. After this if/else block, totalAllocated updated. When totalAmount is zero, the entry is
deleted (set to zero) and then set to zero again outside of the if/else block, which is an unnecessary storage write. A code snippet is
shown below.

1 uint256 totalAmount;
2 uint256 totalPriceNum;
3 uint256 totalPriceDenom;
4 Allocation storage totalAllocation = totalAllocated[msg.sender][_strict];
5 totalAmount = totalAllocation.maticAmount - _amount;
6

7 if (totalAmount == 0) {
8 delete totalAllocated[msg.sender][_strict];
9 } else {

10 // Calculate new `totalPriceNum` and `totalPriceDenom`
11 }
12

13 ///
14 // @audit When `totalAmount == 0`, `totalAllocated` is cleared twice
15 ///
16 totalAllocated[msg.sender][_strict] = Allocation(totalAmount, totalPriceNum, totalPriceDenom);

Recommendation(s): Consider moving the totalAllocated update within the else of the if/else block to avoid a double write when
totalAmount is zero.

Status: Fixed

Update from the client: This has been fixed in line with the recommendation.

8

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/contracts/main/TruStakeMATICv2.sol

NM-0098 - TruFin - SECURITY REVIEW

6 Documentation Evaluation
Software documentation refers to the written or visual information describing software’s functionality, architecture, design, and implemen-
tation. It provides a comprehensive overview of the software system and helps users, developers, and stakeholders understand how the
software works, how to use it, and how to maintain it. Software documentation can take different forms, such as user manuals, system
manuals, technical specifications, requirements documents, design documents, and code comments. Software documentation is critical
in software development, enabling effective communication between developers, testers, users, and other stakeholders. It helps to ensure
that everyone involved in the development process has a shared understanding of the software system and its functionality. Moreover,
software documentation can improve software maintenance by providing a clear and complete understanding of the software system,
making it easier for developers to maintain, modify, and update the software over time. Smart contracts can use various types of software
documentation. Some of the most common types include:

− Technical whitepaper: A technical whitepaper is a comprehensive document describing the smart contract’s design and technical
details. It includes information about the purpose of the contract, its architecture, its components, and how they interact with each
other;

− User manual: A user manual is a document that provides information about how to use the smart contract. It includes step-by-step
instructions on how to perform various tasks and explains the different features and functionalities of the contract;

− Code documentation: Code documentation is a document that provides details about the code of the smart contract. It includes
information about the functions, variables, and classes used in the code, as well as explanations of how they work;

− API documentation: API documentation is a document that provides information about the API (Application Programming Interface)
of the smart contract. It includes details about the methods, parameters, and responses that can be used to interact with the
contract;

− Testing documentation: Testing documentation is a document that provides information about how the smart contract was tested.
It includes details about the test cases that were used, the results of the tests, and any issues that were identified during testing;

− Audit documentation: Audit documentation includes reports, notes, and other materials related to the security audit of the smart
contract. This type of documentation is critical in ensuring that the smart contract is secure and free from vulnerabilities.

These types of documentation are essential for smart contract development and maintenance. They help ensure that the contract is
properly designed, implemented, and tested, and they provide a reference for developers who need to modify or maintain the contract in
the future.

The TruFin team has provided extensive documentation on their GitHub repo, including an overview of the protocol and technical insights
into its components. A summary of these documents is shown below:

− General Overview
− Variable and Mappings
− Precision
− Deposits and Withdrawals
− Allocation
− Distribution
− Front end values
− Off-chain (web2) sanity checks

Each function is complemented by detailed NatSpec comments describing function behavior, inputs, and outputs. Moreover, the team
conducted a comprehensive code walkthrough and maintained open communication to address any inquiries or concerns raised by the
Nethermind auditors.

9

https://github.com/TruFin-io/staker-audit-april/blob/e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75/docs

NM-0098 - TruFin - SECURITY REVIEW

7 Test Suite Evaluation

7.1 Contracts Compilation Output
> npx hardhat compile

Downloading compiler 0.8.14
Generating typings for: 22 artifacts in dir: typechain-types for target: ethers-v5
Successfully generated 76 typings!
Compiled 19 Solidity files successfully

7.2 Tests Output
INIT
INITIALISATION

global variables initialised with correct values (64ms)
validating initializer parameters (66ms)

MODIFIERS
onlyWhitelist

SETTERS - events and ownable
setValidatorShareContract (47ms)
setWhitelist (63ms)
setTreasury (46ms)
setCap (55ms)
setEpsilon (40ms)
setPhi (46ms)
setDistPhi (41ms)
owner successfully sets allowStrict flag
non-owner setting allowStrict flag fails
owner successfully sets epsilon
non-owner setting epsilon fails

ATTACKS
inflation frontrunning attack investigation (274ms)
fail: depositing under 1 matic
pass: successfully deposit 1 matic or more (401ms)

GETTERS
ERC-4626: max functions

maxDeposit (273ms)
maxMint (299ms)
maxWithdraw (239ms)
pass: output of maxWithdraw is greater than to just deposited amount without accrual (245ms)
pass: withdraw output of maxWithdraw after depositing (607ms)
fail: cannot withdraw 1 + output of maxWithdraw after depositing (257ms)
pass: withdraw output of maxWithdraw after depositing and accruing rewards (5545ms)
fail: cannot withdraw 1 + output of maxWithdraw after depositing and accruing rewards (4882ms)
maxRedeem (164ms)
preview functions circular check (36558ms)

ERC-4626: getters + metadata
name
symbol

SETTERS
setValidatorShareContract

Reverts with zero address
Works with a new address
Works with the same address

setWhitelist
Reverts with zero address
Works with a new address
Works with the same address

setTreasury
Reverts with zero address
Works with a new address
Works with the same address

10

NM-0098 - TruFin - SECURITY REVIEW

setPhi
General input validation; reverts when too high
Works with a new value
Works with the same value

setDistPhi
General input validation; reverts when too high
Works with a new value
Works with the same value

setCap
Reverts with too low value (186ms)
Works with a new value
Works with the same value

setEpsilon
Reverts with too high value
Works with a new value
Works with the same value

Other
allocate

Reverts with zero address (172ms)

Deployment
INITIALISATION

Reverts on zero address (200ms)

Checkpoint Submissions
use submitCheckpoint multiple times, ensure rewards are increasing each time (23509ms)

DEPOSIT
single deposit (221ms)
repeated deposits (398ms)
multiple account deposits (603ms)
deposit zero matic (202ms)
try depositing more than the cap
Can withdraw maxWithdraw amount (26240ms)
can immediately withdraw deposited amount (463ms)
unknown non-whitelist user deposit fails
unknown non-whitelist user cannot deposit to a whitelisted user's address
user cannot drain vault by depositing zero (127ms)

WITHDRAW REQUEST
initiate a partial withdrawal (382ms)
initiate a complete withdrawal (380ms)
initiate multiple partial withdrawals (536ms)
initiate withdrawal with rewards wip (5123ms)
try initiating a withdrawal of size zero
try initiating withdrawal of more than deposited (221ms)
Withdraw of strictly-allocated funds blocked (299ms)

WITHDRAW CLAIM
User: withdrawClaim

try claiming withdrawal requested by different user (42ms)
try claiming withdrawal requested 79 epochs ago (53ms)
try claiming withdrawal with unbond nonce that doesn't exist
try claiming already claimed withdrawal (69ms)
successfully claim withdrawal requested 80 epochs ago with expected changes in state and balances (111ms)

User: claimList
try to claim test unbonds when one has not matured (101ms)
try to claim test unbonds when one has already been claimed (71ms)
try to claim test unbonds when one has a different user (87ms)
successfully claim three test unbonds consecutively (145ms)
successfully claim two of three test unbonds inconsecutively (105ms)
successfully claim just one withdrawal (75ms)

RESTAKE
Vault: Simulate rewards accrual

Simulating `SubmitCheckpoint` transaction on RootChainProxy (23226ms)
Vault: compound rewards

rewards compounded correctly (compoundRewards: using unclaimed rewards) (14233ms)
rewards compounded correctly (stakeClaimedRewards: using claimed rewards) (6318ms)
try compounding rewards with rewards equal to zero (216ms)

11

NM-0098 - TruFin - SECURITY REVIEW

ERC-4626 (TEMP)
ERC-4626: standard share exchange functions

deposit (270ms)
mint (296ms)
withdraw (401ms)
pass: redeem some shares to oneself works (479ms)
pass: redeem entire staked balanceOf to oneself (545ms)

ALLOCATION
LOOSE

pass: making two allocations adding up to MATIC amount larger than user deposited MATIC (138ms)
pass: allocating twice adds up to allocated amount correctly (134ms)
pass: first allocation updates state accordingly (127ms)
pass: multiple allocations update share prices in allocation mappings correctly (23823ms)
pass: multiple allocations to different people work correctly (5233ms)
multiple allocations to different people at different shareprices work correctly (18626ms)
pass: should be able to transfer loosely allocated balance (98ms)
pass: allocate full amount deposited to one other user (250ms)
pass: overallocation: allocate 3x more than deposited, recipient rewards math is unchanged, distributors deposit

amount is reduced to cover all rewards (25755ms)↪

pass: distributing rewards does not affect allocated amount (23555ms)
pass: repeated allocation to the same recipient (with accrual of rewards in between), computes new combined

allocation share price correctly (23753ms)↪

dump, deposit, allocate, accrue, distribute, withdraw deposited returns correct getUserInfo (5423ms)
deposit, allocate, accrue, distribute, withdraw deposited returns correct getUserInfo (19200ms)
fail: distributing rewards fails if distributor has transferred deposited amount beforehand (4902ms)
fail: allocating more than deposited at once (46ms)
fail: allocating zero (40ms)

STRICT
pass: allocating twice adds up to allocated amount correctly (141ms)
pass: first allocation updates state accordingly (123ms)
pass: multiple allocations update share prices in allocation mappings correctly (23642ms)
pass: multiple allocations to different people work correctly (5339ms)
multiple allocations to different people at different shareprices work correctly (18669ms)
pass: repeated allocation to the same and other recipients (with accrual of rewards in between && artificially

doubled share price), calculates rewards correctly (23171ms)↪

pass: distributing rewards works correctly for allocations (23318ms)
pass: allocate full amount deposited to one other user (240ms)
pass: allocate full amount deposited to one other user, rounding error (23669ms)
increase spx using dumping (227ms)
dump, deposit, allocate, accrue, distribute, withdraw deposited amt (23530ms)
deposit, allocate, accrue, distribute, withdraw deposited amt (23388ms)
fail: try allocating strictly when `allowStrict` is set to false
fail: allocating more than deposited (138ms)
fail: allocating zero (39ms)
fail: should be unable to transfer strictly allocated balance (80ms)
pass: checks that you can strictly allocate entire maxWithdraw amount (including epsilon) (97ms)
maxRedeemable in getUserInfo returns maxWithdraw when the max balance is strictly allocated (163ms)

BOTH
pass: mix of strict & loose allocation update state accordingly (267ms)
pass: mix of loose & strict allocation update state accordingly (opposite of previous case) (276ms)

DEALLOCATE
LOOSE

Emits 'Deallocated' event with expected parameters (60ms)
Reverts if caller has not made an allocation to the input recipient (38ms)
Reverts via underflow if deallocated amount larger than allocated amount
Removes recipient from distributor's recipients if full individual deallocation (324ms)
Removes distributor from recipient's distributors if full individual deallocation (326ms)
Individual Allocation State

Individual allocation price is not changed during deallocation (52ms)
Reduces individual allocation by deallocated amount (49ms)
Deletes individual allocation from storage if full individual deallocation (50ms)

Total Allocation State
Deletes total allocation from storage if complete total deallocation (49ms)
Updates total allocation price if partial total deallocation (50ms)
Decreases total allocation amount if partial total deallocation (51ms)

Functionality
Deallocate reduces rewards proportionally (5014ms)
Deallocation leads to rewards if the reduced amount was allocated initially (before any distribution) (4927ms)
Non-strict flow of allocating, deallocating and distributing as rewards accrue (18935ms)

12

NM-0098 - TruFin - SECURITY REVIEW

STRICT
Simple deallocation pre reward accrual (51ms)
Simple deallocation updates mappings correctly (62ms)
Pending rewards are distributed upon deallocation (4835ms)
Partial deallocation: share price updated correctly (4718ms)
Partial deallocation: totalAllocated share price updated correctly (4905ms)
Full deallocation: mappings updated correctly (5107ms)
Strict flow of allocating, deallocating and distributing as rewards accrue (20438ms)

REALLOCATE
pass: reallocation to empty allocation (5559ms)
pass: reallocation to existing allocation (from older allocation to more recent allocation) (5519ms)
pass: reallocation to existing allocation (from more recent allocation to older allocation) (5525ms)
pass: reallocating to yourself should be possible (5307ms)
pass: reallocating to a non-whitelisted user should be possible (5401ms)
fail: reallocate from non-existent allocation
reallocating strict allocation fails (242ms)

DISTRIBUTION
External Methods

distributeRewards
Reverts if target allocation is loose and caller is not the allocator
Allows calls from non-allocator addresses if allocation is strict (5091ms)

distributeAll
Reverts if target allocations are loose and caller is not the allocator
Allows calls from non-allocator addresses if allocation is strict (5222ms)
Calls _distributeRewards for all allocator's recipients (191ms)
Updates distributor's total allocation price to current global price (176ms)

Internal Methods
_distributeRewards

Emits 'DistributedRewards' with correct parameters inside distributeAll call (124ms)
Transfers rewards as TruMATIC to recipient (114ms)
Transfers TruMATIC recipientOneTruMATICFee to treasury (111ms)
Updates individual price allocation (101ms)
Strict rewards can be distributed with insufficient max redemption (5484ms)

_distributeRewardsUpdateTotal
Reverts if no allocation made by distributor to input recipient
Skips reward distribution if global share price same as individual share price (52ms)
Updates price of distributor's total allocation (5042ms)
Emits 'DistributedRewards' event with correct parameters (4977ms)

LOOSE
Rewards earned via allocation equal rewards earned via deposit (5360ms)
Can withdraw allocated amount after distributeRewards call (5584ms)
Can withdraw combined allocated amounts after distributeAll call (10317ms)
Mutliple distributeRewards calls are equivalent to single distributeAll call (11372ms)

STRICT
Rewards earned via strict allocation equal rewards earned via deposit (5460ms)
Cannot withdraw strictly allocated amount after distributeRewards call (5189ms)
Cannot withdraw combined allocated amounts after strict allocation (5462ms)
Cannot withdraw combined allocated amounts after distributeAll call (5308ms)
Mutliple distributeRewards calls are equivalent to single distributeAll call (11071ms)

STRICT ALLOCATIONS
Strict allocation attempts revert if allowStrict is false
Allocation limit reduced by current total strict allocation (108ms)
Updates individual strict allocation amount and price (88ms)
Updates total strict allocation amount and price (87ms)
Emits Allocation event with strict = true (78ms)
Allocator added to recipient's strict distributors upon strict allocation (75ms)
Recipient added to strict allocator's recipients upon strict allocation (77ms)

MULTI CHECKPOINTS
Lifecycle testing: Depositor amount+shares are locked as rewards accrue (strict allocations) and unlocked after

deallocate, Receiver correctly aggregates shares+rewards across multiple checkpoints and after deallocate call,
Depositor and receiver can withdraw max withdraw amount, treasury cannot due to epsilon (26219ms)

↪

↪

Rewards are distributed correctly after _reallocation_ and _distribution_, reallocation after 1/2 the time is the
same as having the allocation from the start: 100% to receiver, 0% rewards to depositor (10715ms)↪

Reallocate, deallocate a strict and a loose allocation (without calling distribute), forces distribution of rewards
in case of strict. for loose it is the same as having had no allocation (10637ms)↪

Invariant testing: allocating strictly and loosely across two sets of users. Same workflow accross two separate
user groups accrues the same amount of rewards (11530ms)↪

13

NM-0098 - TruFin - SECURITY REVIEW

TruMATIC ERC20 Functionality
has a name
has a symbol
totalSupply

totalSupply equals totalStaked for first deposits
totalSupply is not altered by rewards accrual without deposit (5128ms)
new deposit after reward accrual increases totalSupply (5322ms)
withdraw requests pre accrual decrease totalSupply correctly (382ms)
withdraw requests post accrual decrease totalSupply correctly (5724ms)

balanceOf
correctly updates balances post deposit (220ms)
correctly updates sharePrice post reward accrual (5182ms)

transfer
correctly transfers post deposit (237ms)
Reverts with custom error if more than users balance is transferred
Transfer post loose allocation works (282ms)

transferFrom
Reverts without allowance/with insufficient balance (40ms)
transferFrom after deposit works (249ms)
transferFrom after loose allocation works (291ms)

Strict Allocation
totalSupply

distributing rewards does not affect totalSupply (5345ms)
transfer

Transfer post strict allocation fails (306ms)
transferFrom

transferFrom after strict allocation reverts if more than unallocated balance is transferred (312ms)

ERC-4626
deposit

should revert if receiver is not caller
should mint fresh shares to depositor (169ms)
- should increase vault assets by deposited MATIC
should emit 'Deposit' event (157ms)

mint
should revert if receiver is not caller
should mint fresh shares to depositor (146ms)
should emit 'Deposit' event (136ms)

withdraw
should burn shares from withdrawer (192ms)
should emit 'Withdraw' event (178ms)

redeem
should revert if receiver is not caller
should burn redeemed shares from redeemer's balance (197ms)

maxRedeem
should reduce maximum share redepmtion by strictly allocated amount (251ms)
should not reduce maximum share redemption by loosely allocated amount (216ms)

Staker
Inflation attack check

Basic inflation attack (352ms)

Inflation Attack
Checks

Check Inflation not possible with user leaving tiny remaining balance (377ms)

Staker
Scenario 1: transfer of allocated shares

Scenario (628ms)

Scenario -- Check storage after allocate/deallocate/reallocate
Flow

Deposit as user1, deployer (348ms)
Allocate user1 -> user2 (133ms)
Allocate user1 -> deployer (140ms)
Deallocate half user1 -> user2 (97ms)
Deallocate last half user1 -> user2 (73ms)
Reallocate user1 (deployer -> user2) (80ms)
Allocate user1 -> deployer again (128ms)
Reallocate user1 (user2 -> deployer) (63ms)

14

NM-0098 - TruFin - SECURITY REVIEW

Staker
Setters

Set validator share contract
Set whitelist
Set treasury
Set cap
Set phi
Set dist phi

Main
Deposit (194ms)
Mint (200ms)
Withdraw (379ms)
Redeem (378ms)

Allocations
Allocate to user (500ms)
Deallocate from user (322ms)
Reallocate to another user (292ms)
Distribute rewards (642ms)

Revert
When try to initialize contract again
When not owner tries to set validator share contract
When not owner tries to set whitelist
When not owner tries to set treasury
When not owner tries to set cap
When not owner tries to set phi
When not owner tries to set dist phi
When try to set phi if it is too large
When try to set dist phi if it is too large
When not whitelisted user tries to allocate
When not whitelisted user tries to deallocate
When not whitelisted user tries to reallocate
When try to allocate 0 amount (39ms)
When try to deallocate
When try to reallocate if allocation not exists
When not whitelisted user tries to deposit
When not whitelisted user tries to mint
When not whitelisted user tries to withdraw
When not whitelisted user tries to redeem

263 passing (15m)
1 pending

7.3 Code Coverage

> npx hardhat coverage

The relevant output is presented below.

-----------------------------|----------|----------|----------|----------|----------------|
File	% Stmts	% Branch	% Funcs	% Lines	Uncovered Lines
helpers/ | 14.55 | 8.33 | 13.64 | 17.82 | |
MasterWhitelist.sol | 14.55 | 8.33 | 13.64 | 17.82 |... 628,629,631 |
interfaces/ | 100 | 100 | 100 | 100 | |
IMasterWhitelist.sol | 100 | 100 | 100 | 100 | |
IStakeManager.sol | 100 | 100 | 100 | 100 | |
ITruStakeMATICv2.sol | 100 | 100 | 100 | 100 | |
IValidatorShare.sol | 100 | 100 | 100 | 100 | |
main/ | 100 | 86.59 | 100 | 97.22 | |
TruStakeMATICv2.sol | 100 | 86.59 | 100 | 97.22 |... 707,773,774 |
TruStakeMATICv2Storage.sol | 100 | 100 | 100 | 100 | |
Types.sol | 100 | 100 | 100 | 100 | |

-----------------------------|----------|----------|----------|----------|----------------|
All files	84.12	62.71	60.42	79.83	

7.4 Slither
All the relevant issues raised by Slither have been incorporated into the issues described in this report.

15

NM-0098 - TruFin - SECURITY REVIEW

8 About Nethermind
Nethermind is a Blockchain Research and Software Engineering company. Our work touches every part of the web3 ecosystem - from
layer 1 and layer 2 engineering, cryptography research, and security to application-layer protocol development. We offer strategic support
to our institutional and enterprise partners across the blockchain, digital assets, and DeFi sectors, guiding them through all stages of the
research and development process, from initial concepts to successful implementation.

We offer security audits of projects built on EVM-compatible chains and Starknet. We are active builders of the Starknet ecosystem,
delivering a node implementation, a block explorer, a Solidity-to-Cairo transpiler, and formal verification tooling. Nethermind also provides
strategic support to our institutional and enterprise partners in blockchain, digital assets, and decentralized finance (DeFi). In the next
paragraphs, we introduce the company in more detail.

Blockchain Security: At Nethermind, we believe security is vital to the health and longevity of the entire Web3 ecosystem. We pro-
vide security services related to Smart Contract Audits, Formal Verification, and Real-Time Monitoring. Our Security Team comprises
blockchain security experts in each field, often collaborating to produce comprehensive and robust security solutions. The team has a
strong academic background, can apply state-of-the-art techniques, and is experienced in analyzing cutting-edge Solidity and Cairo smart
contracts, such as ArgentX and StarkGate (the bridge connecting Ethereum and StarkNet). Most team members hold a Ph.D. degree and
actively participate in the research community, accounting for 240+ articles published and 1,450+ citations in Google Scholar. The security
team adopts customer-oriented and interactive processes where clients are involved in all stages of the work.

Blockchain Core Development: Our core engineering team, consisting of over 20 developers, maintains, improves, and upgrades our
flagship product - the Nethermind Ethereum Execution Client. The client has been successfully operating for several years, supporting both
the Ethereum Mainnet and its testnets, and now accounts for nearly a quarter of all synced Mainnet nodes. Our unwavering commitment
to Ethereum’s growth and stability extends to sidechains and layer 2 solutions. Notably, we were the sole execution layer client to facilitate
Gnosis Chain’s Merge, transitioning from Aura to Proof of Stake (PoS), and we are actively developing a full-node client to bolster Starknet’s
decentralization efforts. Our core team equips partners with tools for seamless node set-up, using generated docker-compose scripts
tailored to their chosen execution client and preferred configurations for various network types.

DevOps and Infrastructure Management: Our infrastructure team ensures our partners’ systems operate securely, reliably, and effi-
ciently. We provide infrastructure design, deployment, monitoring, maintenance, and troubleshooting support, allowing you to focus on
your core business operations. Boasting extensive expertise in Blockchain as a Service, private blockchain implementations, and node
management, our infrastructure and DevOps engineers are proficient with major cloud solution providers and can host applications in-
house or on clients’ premises. Our global in-house SRE teams offer 24/7 monitoring and alerts for both infrastructure and application
levels. We manage over 5,000 public and private validators and maintain nodes on major public blockchains such as Polygon, Gnosis,
Solana, Cosmos, Near, Avalanche, Polkadot, Aptos, and StarkWare L2. Sedge is an open-source tool developed by our infrastructure
experts, designed to simplify the complex process of setting up a proof-of-stake (PoS) network or chain validator. Sedge generates docker-
compose scripts for the entire validator set-up based on the chosen client, making the process easier and quicker while following best
practices to avoid downtime and being slashed.

Cryptography Research: At Nethermind, our Cryptography Research team is dedicated to continuous internal research while fostering
close collaboration with external partners. The team has expertise across a wide range of domains, including cryptography protocols,
consensus design, decentralized identity, verifiable credentials, Sybil resistance, oracles, and credentials, distributed validator technology
(DVT), and Zero-knowledge proofs. This diverse skill set, combined with strong collaboration between our engineering teams, enables us
to deliver cutting-edge solutions to our partners and clients.

Smart Contract Development & DeFi Research: Our smart contract development and DeFi research team comprises 40+ world-class
engineers who collaborate closely with partners to identify needs and work on value-adding projects. The team specializes in Solidity
and Cairo development, architecture design, and DeFi solutions, including DEXs, AMMs, structured products, derivatives, and money
market protocols, as well as ERC20, 721, and 1155 token design. Our research and data analytics focuses on three key areas: technical
due diligence, market research, and DeFi research. Utilizing a data-driven approach, we offer in-depth insights and outlooks on various
industry themes.

Our suite of L2 tooling: Warp is Starknet’s approach to EVM compatibility. It allows developers to take their Solidity smart contracts
and transpile them to Cairo, Starknet’s smart contract language. In the short time since its inception, the project has accomplished many
achievements, including successfully transpiling Uniswap v3 onto Starknet using Warp.

− Voyager is a user-friendly Starknet block explorer that offers comprehensive insights into the Starknet network. With its intuitive
interface and powerful features, Voyager allows users to easily search for and examine transactions, addresses, and contract
details. As an essential tool for navigating the Starknet ecosystem, Voyager is the go-to solution for users seeking in-depth
information and analysis;

− Horus is an open-source formal verification tool for StarkNet smart contracts. It simplifies the process of formally verifying Starknet
smart contracts, allowing developers to express various assertions about the behavior of their code using a simple assertion
language;

− Juno is a full-node client implementation for Starknet, drawing on the expertise gained from developing the Nethermind Client.
Written in Golang and open-sourced from the outset, Juno verifies the validity of the data received from Starknet by comparing it to
proofs retrieved from Ethereum, thus maintaining the integrity and security of the entire ecosystem.

Learn more about us at nethermind.io.

16

nethermind.io

NM-0098 - TruFin - SECURITY REVIEW

Disclaimer

This report is based on the scope of materials and documentation provided by you to Nethermind in order that Nethermind could conduct
the security review outlined in 1. Executive Summary and 2. Audited Files. The results set out in this report may not be complete nor
inclusive of all vulnerabilities. Nethermind has provided the review and this report on an as-is, where-is, and as-available basis. You agree
that your access and/or use, including but not limited to any associated services, products, protocols, platforms, content, and materials,
will be at your sole risk. Blockchain technology remains under development and is subject to unknown risks and flaws. The review does
not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that could present
security risks. This report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party
should rely on this report in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset.
To the fullest extent permitted by law, Nethermind disclaims any liability in connection with this report, its content, and any related services
and products and your use thereof, including, without limitation, the implied warranties of merchantability, fitness for a particular purpose,
and non-infringement. Nethermind does not warrant, endorse, guarantee, or assume responsibility for any product or service advertised
or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,
called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites,
any websites or mobile applications appearing on any advertising, and Nethermind will not be a party to or in any way be responsible for
monitoring any transaction between you and any third-party providers of products or services. As with the purchase or use of a product
or service through any medium or in any environment, you should use your best judgment and exercise caution where appropriate.
FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED
SERVICES OR MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX,
LEGAL, REGULATORY, OR OTHER ADVICE.

17

https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io
https://nethermind.io

	Executive Summary
	Audited Files
	Summary of Issues
	Risk Rating Methodology
	Issues
	[Medium] Changing stakingTokenAddress will affect share pricing and staking calculations
	[Medium] Inflation attack can lead to loss of value for depositors
	[Low] The setCap(...) function can set a cap lower than the current deposited amount
	[Info] Shadowed variables and functions
	[Best Practice] Boolean comparisons can be avoided
	[Best Practice] Usage of outdated solidity compiler
	[Best Practice] Using enum instead of arbitrary number for userType.
	[Best Practices] Incorrect comment in reallocate(...)
	[Best Practices] NatSpec documentation refers to outdated variables
	[Best Practices] Solidity code style
	[Best Practices] Unnecessary storage write in deallocate(...)

	Documentation Evaluation
	Test Suite Evaluation
	Contracts Compilation Output
	Tests Output
	Code Coverage
	Slither

	About Nethermind

