
SMART CONTRACT AUDIT

May 22nd 2023 | v.	1.0

score

98

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

TruFin Smart Contract Audit

This document outlines the overall security of the TruFin smart contracts evaluated by the
Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the TruFin smart contract codebase
for quality, security, and correctness.

Contract Status

low Risk

Testable Code

97% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. To ensure
a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the TruFin team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

2

TruFin Smart Contract Audit

7Protocol Overview

13Complete Analysis

21Code Coverage and Test Results for all files written by Zokyo Security

25Code Coverage and Test Results for all files written by the TruFin team

5Executive Summary

12Structure and Organization of the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

TruFin Smart Contract Audit

The source code of the smart contract for 1st audit iteration was taken from the TruFin
repository:  
https://github.com/TruFin-io/staker-audit

Branch: master

Initial commit: 71e300d31ad068f4118752f5f94cc571b086f6f1

Final commit: b2e4f7e882dcbac970bd9e63369f7147bb88813b

The source code of the smart contract for 2nd audit iteration was taken from the TruFin
repository:  
https://github.com/TruFin-io/staker-audit-april

Branch: master

Initial commit: 07edcd1dee454ece2a7f0377c92f74d713c8503f

Final commit: e5065cb2e3c7c49e28d0644b1128eae0fa4d5a75

Within the scope of the 1st audit iteration, the team of auditors reviewed the following

contract(s):

StakerStorage.sol

Staker.sol

Within the scope of the 2nd audit iteration, the team of auditors reviewed the following

contract(s):

TruStakeMATICv2Storage.sol

TruStakeMATICv2.sol

4

TruFin Smart Contract Audit

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most recent vulnerabilities;

Meets best practices in code readability, etc.

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Testing contract logic against common
and uncommon attack vectors.

04 Thorough manual review of the
codebase line by line.

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of TruFin smart contracts. To do so, the code was reviewed line by line by
our smart contract developers, who documented even minor issues as they were discovered.
Part of this work includes writing a test suite using the Hardhat testing framework. In
summary, our strategies consist largely of manual collaboration between multiple team
members at each stage of the review:

5

TruFin Smart Contract Audit

Executive Summary
 Zokyo Security received a set of contracts that comprise the Trufin staker protocol. Two
contracts were within the audit scope: Staker.sol and StakerStorage.sol. The staking function
allows users to deposit their Matic tokens on the Ethereum mainnet and receive shares in
exchange. Matic is then invested into Polygon PoS Staking Contract, allowing staking
contracts to earn rewards, which are distributed among the protocol users. Thus, the
auditors needed to not only analyze smart contracts against the list of common
vulnerabilities, gas optimization, and detect any possible issues with the contract but also
validate that Staker.sol interacts with Polygon Staking correctly and safely.

 The manual audit found several informational and low issues, as well as one medium issue.
The medium issue described the presence of a whitelist in the smart contract. If users had
deposited Matic tokens while they were allowlisted, they wouldn’t be able to withdraw them
if they were removed from the whitelist. Trufin verified that such functionality is necessary: if
users are put on the sanction list, they can no longer interact with the protocol. The other
issues were connected to a lack of parameter validation, documentation, and usage of
custom errors. The Trufin team has successfully fixed all of them. Also, one of the
informational issues was initially marked as high and was connected to the unavailability of
deploying a staking smart contract with any other token but Matic due to the design of the
stakeClaimedRewards() function, which performs a transfer of zero Matic from zero address.
Since most ERC-20 tokens forbid direct transfers from zero addresses, such an approach
won’t work with them. However, it works fine in the current implementation where ERC-20
Matic on Ethereum mainnet is used. The issue was marked as info later after Trufin verified
that only Matic would be used.

 Zokyo Security has also prepared a set of unit tests on the Ethereum mainnet-fork to
validate that Staker smart contract interacts with Polygon staking correctly. Besides testing
a common protocol flow, such as deposits and withdrawals, auditors have also validated the
interaction with 3rd party contracts on mainnet-fork, calculation of shares price, restaking of
rewards, and profits withdrawal.

 The overall security of smart contracts is high enough. Contracts are well-written and
tested both by the Trufin and Zokyo Security teams. Moreover, Trufin added sufficient
documentation describing all the smart contract aspects during the audit.

6

TruFin Smart Contract Audit

 During the second audit iteration, Zokyo Security carefully reviewed all the changes made
in smart contracts. Trufin added support for ERC-4626, a tokenized vault standard, and
allocation functionality. Therefore, the second audit iteration aimed to check the correctness
of ERC-4626 implementation as well as validate the standard vulnerabilities and attacks on
this standard, check all the changes in the logic of smart contracts, validate the flow of new
functionality, check smart contracts against the list of common vulnerabilities and verify that
they are optimized in terms of gas consumptions.

 Auditors discovered one critical and several informational issues. The critical issue was
connected to the inflation attack on ERC-4626. Auditors proposed several approaches to
mitigate this issue. Trufin has successfully fixed it by introducing a minimum amount of Matic
that users must deposit. The other issues were related to file naming, commented code, and
business logic validation. Trufin has fixed or verified all of these issues as well.

 The overall security of smart contracts is still high enough. Auditors have prepared a set of
unit tests to validate logic and additional scenarios to validate the security of smart
contracts and implementation of the ERC-4626 standard. Contracts are well-written, contain
sufficient natSpec documentation, and have passed all the security tests.

TruFin staking scheme

7

trufin Smart Contract Audit

Stakes tokens to
ValidatorShare
contract using

buyVoucher function

Staker.sol

uint256 assets --
amount of staking
tokens to deposit.

address receiver --
address of msg.sender

Check that assets is
less that maxDeposit
for user and at lest 1

Matic

Calculates share
increase

Mint shares to
treasury address

deposit()

Whitelisted users

uint256 _unbondNonce --
nonce from withdraw request

to claim pending tokens.

Transfer tokens from
user to contract

Increase allowance
for stakeManager

contract

Checks that
msg.sender == user

Unclaims tokens
from ValidatorShare

contract

withdrawClaim()

Whitelisted users

Calculates new
shares that should

be minted

Restakes using
restake() funciton on

ValidatorShare
contract

Transfers
tokens to user

compound
Rewards()

Anyone

uint256 _amount -- amount
of staking tokens to request

to withdraw.

Check that msg.sender ==
receiver OR msg.sender ==

owner

Check that
assets > 0

Check that assets is
less than

maxWithdraw for
user

Calculate share
decrease

Burn shares from
user

Mint shares to
treasury address

Unbond tokens from
validator

withdraw()

Whitelisted users

TruFin staking scheme

8

trufin Smart Contract Audit

Staker.sol

Calculate
individualAmount,

individualNum,
individualDenom

Store calculated
variables to

mapping allocations

[msg.sender]

[_recipient][_strict]

Calculate
totalAmount,

totalNum,

totalDenom

Store calculated
variables to mapping
totalAllocated[msg.s

ender][_strict]

Check that total
_amount <

maxWithdraw

(msg.sender)

Check that
_amount != 0

allocate()

Whitelisted users

uint256 _amount --
amount of staking tokens

to deposit

address _recipient --
address of user to whom
msg.sender is allocating

bool _strict -- determine
whether deallocation
should be subject to

checks or not

Remove amount
from

individualAllocatio
n.maticAmount

If individualAllocation.

maticAmount == 0 ->

remove recipient from

distributors array

Get info from mapping
totalAllocated[msg.sen

der][_strict]

Get info from
mapping

allocations[msg.sen
der][_recipient]

[_strict]

Check that
individualAllocation
.maticAmount != 0

Calculate total

Amount = totalAllocation.

maticAmount - _amount

If totalAmount == 0
-> remove user from
totalAllocated[msg.

sender][_strict]

deallocate()

Whitelisted users

uint256 _amount -- amount
of staking tokens to

deposit

address _recipient --
address of user to

whom msg.sender is
allocating

bool _strict --
determine whether

deallocation should be
subject to checks or

not

TruFin staking scheme

9

trufin Smart Contract Audit

Staker.sol

Pop oldRecipient
from distributors

reallocate()

Whitelisted users

address _oldRecipient --
previous recipient of the

allocation

address _newRecipient --
new recipient of the

allocation

Check that
individualAllocation.

maticAmount != 0

Get info from mapping
totalAllocated[msg.sen

der][_strict]

Calculate and
distribute tokens

Check that msg.sender
is _distributor and

_strict == false

Get info from mapping
allocations[_distributor]

[_recipient][_strict]

distributeRewar
ds()

Distributor

bool _strict -- determine
whether deallocation should
be subject to checks or not

Set values from
oldRecipient to
newRecipient

Get info from mapping
allocations[msg.sender
][_newRecipient][false]

Check that
allocation exists

Get info from mapping
allocations[msg.sender]

[_oldRecipient][false]

(msg.sender)

address _distributor --
address of distributor from
whom recipient is receiving

rewards

address _recipient --
address of user who is
receiving the rewards

TruFin staking scheme

10

trufin Smart Contract Audit

Deposit

Whitelisted
users

Staker

ValidatorShare

User Tokens

SharesValidatorShare

Staker

Rewardsrestake()

Goes to
ValidatorShare

Mints shares
for user

Transfers stake
tokens

Stake tokens

Restake mints new shares

Rewards restakes back

to ValidatorShare

Token flow

Distribute rewards

Distributor

Recipient

Transfers
reward tokens

Recipient

Treasury

Reward tokens
to user

fee transfer

Token flow

Reward tokens

TruFin staking scheme

11

trufin Smart Contract Audit

Request Withdraw and Withdraw

Whitelisted
users

Staker

ValidatorShare

Requests
withdraw

Unbond staking

Whitelisted
users

Staker

ValidatorShare

Claim
withdraw

W
it

hd
ra

w
 t

ok
en

s

to

 u
se

r

Tr
an

sf
er

to

ke
ns Unstake tokens

Staker

ValidatorShareShares

User Tokens +
Rewards

Burns user's
shares

Token flow

Tokens return back to user

depending on share price

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For ease of navigation, the following sections are arranged from the most to the least critical
ones. Issues are tagged as “Resolved” or “Unresolved” depending on whether they have
been fixed or addressed. The issues tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

12

TruFin Smart Contract Audit

Complete Analysis

Medium-1 Verified

Un-whitelisted users can’t withdraw their funds.

Staker.sol: withdrawRequest(), withdrawClaim().

Only whitelisted users can deposit, request or claim withdrawals. Thus, if a user has
deposited while he was allowlisted and then later removed from the whitelist, he won’t have
access to his funds and will withdraw them.

Recommendation:

Allow users who were allowlisted to withdraw their deposited tokens even if they were
removed from the whitelist.

From client:

According to the Trufin team, users who are not whitelisted should be able to withdraw
funds. This is because once they are added to the OFAC sanctions list, they should no longer
be able to participate in the protocol.

13

TruFin Smart Contract Audit

low-1 resolved

Parameters lack validation.

Staker.sol: initialize() - validate parameters before deploy.

Setter functions - setStakingToken(), setStakeManagerContract(),
setValidatorShareContract(), setWhitelist(), setTreasury(), setCap().

setPhi() - validate that the function argument is less or equal to the phiPrecision constant.

It is recommended to validate that address parameter are not zero addresses so that
contract will work without issues.

Recommendation:

Validate functions parameters.

From client:

The validation of phi was added. As for address validation, setting a zero address might be a
valid case, thus validation is unnecessary.

1st audit iteration Complete Analysis

14

TruFin Smart Contract Audit

Info-1 resolved

Custom errors should be used.

Starting from the 0.8.4 version of Solidity, it is recommended to use custom errors instead of
storing error message strings in storage and use “require” statements. Using custom errors is
more efficient regarding gas spending and increases code readability.

Recommendation:

Use custom errors.

Info-2 resolved

Lack of documentation.

Adding natSpec to contract functions and variables will make it more understandable about
functions and variables. As an example, a contract uses a specific token for staking. In this
case, having documentation (natSpec) in the contract description and function would be
helpful, where a token will be used.

Recommendation:

Add natSpec documentation.

Post-audit:

A detailed natSpec documentation was added.

15

TruFin Smart Contract Audit

Info-3 Verified

Dangerous transfer call.

Staker.sol: stakeClaimedRewards().

Function stakeClaimedRewards invokes _deposit() function with zero address as a
parameter. Later in the _deposit() function invokes safeTransferFrom, which transfers a zero
amount of token from a zero address. Though it works fine in fork tests, if you try to use any
other token rather than MATIC with transferFrom, the transaction will fail as it is not allowed
to transfer from a zero address. Though the current implementation works fine with MATIC
on the Ethereum network, transactions fail if other tokens are used.

Recommendation:

Validate that if _user is zero address in _deposit() function, it should skip safeTransferFrom
OR validate that contract should only support MATIC.

From client:

Trufin has verified that smart contract is supposed to interact only with MATIC on the
Ethereum network.

Critical-1 Verified

ERC4626 inflation attack is possible in the old ERC4626 version.

Staker.sol: line 10 
The current implementation of the ERC4626 contract is susceptible to an underlying asset
balance manipulation attack. You can check here the OpenZeppelin discussion. In the newer
version of the ERC4626 it was fixed.

Recommendation:

Check the solution OpenZeppelin implemented and update the library version if it suits. Or
implement one of the fixes discussed in the linked issue if the default fix doesn’t suit your
needs.

Post-audit.

The minimal deposit was set to 1 MATIC to prevent an inflation attack and correctly calculate
deposits.

16

TruFin Smart Contract Audit

2ND audit iteration Complete Analysis

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3706#

17

TruFin Smart Contract Audit

Info-2 resolved

Hardhat console in pre-production code.

Staker.sol: line 14. It is recommended to remove any tools necessary for testing from pre-
production code. Hardhat console is a tool for testing contract behavior. Thus, hardhat
import should be removed from the contract when preparing for deployment.

Recommendation:

Remove import of Hardhat console from contract.

Post-audit.

The Hardhat import was removed.

Info-3 resolved

Errors lack comments.

Staker.sol: lines 325-331.

The code contains sufficient natSpec documentation. In order to keep consistent and good
readability of the code, it is recommended to add natSpec to add new features, including
new custom errors. This would help inspect any errors when a contract is deployed.

Recommendation:

Add comments to errors.

Post audit.

The comments were added.

18

TruFin Smart Contract Audit

Info-4 resolved

Commented code.

Staker.sol: _distributeRewardsUpdateTotal(), lines 1084-1086.

Staker.sol: _distributeRewards(), lines 1178-1181.

Pre-production smart contracts should not contain commented code, as it looks like an
unfinished logic.

Recommendation:

Remove or uncomment any commented code.

Post-audit.

The commented code was removed.

Info-5 resolved

Unnecessary subtraction/adding.

Staker.sol: allocate(), line 1018.

Staker.sol: deallocate(), line 1128.

The logic of adding 2 to sharePriceNum when adding allocation and subtracting 1 during
deallocation is confusing. Thus its correctness should be verified (for example, in case it is
necessary for precision accuracy).

Recommendation:

Verify that this logic is intended.

Post audit.

Trufin has changed the logic for calculating sharePrice.

19

TruFin Smart Contract Audit

Info-7 verified

Potential revert in distributeRewards() when depositor transfers all shares.

Staker.sol: _distributeRewards(), lines 1213, 1219.

When a depositor transfers all their shares to another account, and then the receiver claims
rewards, the _distributeRewards() function may revert. If the depositor retains enough
shares, the function will execute successfully. For example, if the depositor has 1000 shares
and the reward is 2.5, the function will revert if the depositor has less than 2.5 shares. If the
depositor has 2.5 or more shares, the function will execute, and the receiver will receive the
reward. This behavior should be verified to ensure it is the intended functionality or if
transferring allocated shares should be restricted.

Recommendation:

Verify that this behavior is intended and acceptable OR consider restricting allocated share
transfers.

Info-6 resolved

Remove todo comment.

Staker.sol: _distributeRewardsUpdateTotal(), line 940

Pre-production code should not contain “to-do” comments.

Recommendation:

Remove the “// needs fixing” comment. Also, check if fixing is done and if this comment was
mistakenly left.

PassPassAccess Management Hierarchy

PassArithmetic Over/Under Flows Pass

TruStakeMATICv2Storage.sol TruStakeMATICv2.sol

PassPassDelegatecall

Pass PassHidden Malicious Code

PassPassUnchecked CALL
Return Values

PassPassExternal Contract Referencing

PassPassGeneral Denial Of Service (DOS)

PassPassFloating Points and Precision

PassPassSignatures Replay

PassPass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassPassRe-entrancy

PassPassUnexpected Ether

PassPassDefault Public Visibility

PassPassEntropy Illusion (Lack of Randomness)

PassPassShort Address/ Parameter Attack

PassPassRace Conditions / Front Running

PassPassUninitialized Storage Pointers

PassPassTx.Origin Authentication

20

TruFin Smart Contract Audit

Staker
Deposit operations
✓ Should deposit (402ms)
✓ Should deposit twice (549ms)
✓ Should deposit (2 users) (537ms)
✓ Should deposit zero amount (232ms)
✓ Shoudn't deposit more than CAP (85ms)
Rewards operations
✓ Should simulate `SubmitCheckpoint` transaction on RootChainProxy (6250ms)
✓ Should compound unclaimed rewards (5890ms)
✓ Should withdraw after compound unclaimed rewards (6171ms)
✓ Should compound unclaimed rewards (2 users) (6014ms)
✓ Shouldn't compound 0 rewards (241ms)
Withdraw operations
✓ Should withdraw part (443ms)
✓ Should withdraw all (412ms)
✓ Should withdraw parts twice (597ms)
✓ Should withdraw + stakeClaimedRewards (6448ms)
✓ Shouldn't withdraw zero amount (38ms)
✓ Shouldn't withdraw more than deposited (217ms)
WithdrawClaim operations
✓ Shouldn't claim without requested withdrawal (42ms)
✓ Shouldn't claim with incomplete withdrawal period (48ms)
✓ Shouldn't claim with non-existent unbond nonce
✓ Shouldn't claim already claimed withdrawal (130ms)
✓ Should withdrawClaim (197ms)
ClaimList operations
✓ Shouldn't claim if one from list has not matured (148ms)
✓ Shouldn't claim list when one has already been claimed (193ms)
✓ Shouldn't claim list when one request from list was from different user (100ms)

As a part of our work assisting TruFin in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the TruFin
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

the 1st audit revision

21

TruFin Smart Contract Audit

✓ Should claimList (205ms)
✓ Should claim two of three from list (149ms)
✓ Should claim one of three from list (77ms)
Additional shares calculation check
✓ Should calculate shares correctly (1265ms)
✓ Should deposit user's funds + amount that was previously on contract
✓ Should withdraw more than deposited after share price increase

30 passing

22

TruFin Smart Contract Audit

StakerStorage.sol

All files

FILE % STMTS % BRANCH % FUNCS

Staker.sol

100

94.3

100

77.3

100

95.4

97.15 88.65 97.7

Staker
Inflation attack check
✓ Basic inflation attack

Staker
Scenario 1
✓ Transferring allocated tokens (1474ms)

Scenario -- Check storage after allocate/deallocate/reallocate
Flow
✓ Deposit as user1, deployer (207ms)
✓ Allocate user1 -> user2 (95ms)
✓ Allocate user1 -> deployer (93ms)
✓ Deallocate half user1 -> user2 (57ms)
✓ Deallocate last half user1 -> user2 (49ms)
✓ Reallocate user1 (deployer -> user2) (48ms)
✓ Allocate user1 -> deployer again (87ms)
✓ Reallocate user1 (user2 -> deployer) (70ms)

Staker
Setters
✓ Set staking token
✓ Set staker manager contact
✓ Set validator share contract
✓ Set whitelist
✓ Set treasury
✓ Set cap
✓ Set phi
✓ Set dist phi
Main
✓ Deposit (862ms)
✓ Mint (87ms)

As a part of our work assisting TruFin in verifying the correctness of their contract code, our
team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the TruFin
contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security

Code Coverage and Test Results for all files

the 2nd audit revision

23

TruFin Smart Contract Audit

✓ Withdraw (759ms)
✓ Redeem (194ms)
Allocations
✓ Allocate to user (336ms)
✓ Deallocate from user (154ms)
✓ Reallocate to another user (147ms)
✓ Distribute rewards (380ms)
Revert
✓ When try to initialize contract again
✓ When not owner tries to set staking token
✓ When not owner tries to set stake manager contract
✓ When not owner tries to set validator share contract
✓ When not owner tries to set whitelist
✓ When not owner tries to set treasury
✓ When not owner tries to set cap
✓ When not owner tries to set phi
✓ When not owner tries to set dist phi
✓ When try to set phi if it is too large
✓ When try to set dist phi if it is too large
✓ When not whitelisted user tries to allocate (38ms)
✓ When not whitelisted user tries to deallocate
✓ When not whitelisted user tries to reallocate
✓ When try to allocate if insufficient balance (39ms)
✓ When try to allocate 0 amount
✓ When try to deallocate
✓ When try to reallocate if allocation not exists
✓ When not whitelisted user tries to deposit
✓ When not whitelisted user tries to mint
✓ When not whitelisted user tries to withdraw
✓ When not whitelisted user tries to redeem

24

TruFin Smart Contract Audit

StakerStorage.sol

FILE % STMTS % BRANCH % FUNCS

Staker.sol 81.78

100

65.75

100

84.31

100

Staker
Owner: Initial State
✓ initialize (131ms)
Owner: Setters
✓ setStakingToken (112ms)
✓ setStakeManagerContract (95ms)
✓ setValidatorShareContract (87ms)
✓ setWhitelist (75ms)
✓ setTreasury (82ms)
✓ setCap (83ms)
✓ setPhi (77ms)
User: deposit
✓ single deposit (396ms)
✓ repeated deposits (604ms)
✓ multiple account deposits (527ms)
✓ deposit zero matic (196ms)
✓ try depositing more than the cap (68ms)
Vault: Simulate rewards accrual
✓ Simulating `SubmitCheckpoint` transaction on RootChainProxy (6659ms)
Vault: compound reward
✓ rewards compounded correctly (compoundRewards: using unclaimed rewards) (6241ms)
✓ rewards compounded correctly (stakeClaimedRewards: using claimed rewards) (6385ms)
✓ try compounding rewards with rewards equal to zero (281ms)
User: withdrawRequest
✓ initiate a partial withdrawal (469ms)
✓ initiate a complete withdrawal (443ms)
✓ initiate multiple partial withdrawals (697ms)
✓ initiate withdrawal with rewards wip (8136ms)
✓ try initiating a withdrawal of size zero (63ms)
✓ try initiating withdrawal of more than deposited (233ms)

As a part of our work assisting TruFin in verifying the correctness of their contract code, our
team has checked the complete set of tests prepared by the TruFin team.

We need to mention that the original code has a significant original coverage with testing
scenarios provided by the TruFin team. All of them were also carefully checked by the team
of auditors.

Tests written by the TruFin team

Code Coverage and Test Results for all files

25

TruFin Smart Contract Audit

User: withdrawClaim
✓ try claiming withdrawal requested by different user (49ms)
✓ try claiming withdrawal requested 79 epochs ago (73ms)
✓ try claiming withdrawal with unbond nonce that doesn't exist
✓ try claiming already claimed withdrawal (90ms)
✓ successfully claim withdrawal requested 80 epochs ago with expected changes in state
and balances (107ms)
User: claimLis
✓ try to claim test unbonds when one has not matured (528ms)
✓ try to claim test unbonds when one has already been claimed (219ms)
✓ try to claim test unbonds when one has a different user (97ms)
✓ successfully claim three test unbonds consecutively (454ms)
✓ successfully claim two of three test unbonds inconsecutively (454ms)
✓ successfully claim just one withdrawal (325ms)

34 passing (58s)

26

TruFin Smart Contract Audit

StakerStorage.sol

All files

FILE % STMTS % BRANCH % FUNCS

Staker.sol

100

92.06

100

75

100

93.55

96.03 87.5 96.76

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted
as an investment or legal advice, nor should its authors be held
accountable for the decisions made based on them.

Zokyo Security recommends the team put in place a bug bounty
program to encourage further analysis of the smart contract by third
parties.

TruFin

TruFin

